Article

Imaging the functional connectivity of the Periaqueductal Gray during genuine and sham electroacupuncture treatment

Department of Psychiatry, Massachusetts General Hospital, Charlestown, USA.
Molecular Pain (Impact Factor: 3.53). 11/2010; 6. DOI: 10.1186/1744-8069-6-80
Source: DOAJ

ABSTRACT Abstract Background Electroacupuncture (EA) is currently one of the most popular acupuncture modalities. However, the continuous stimulation characteristic of EA treatment presents challenges to the use of conventional functional Magnetic Resonance Imaging (fMRI) approaches for the investigation of neural mechanisms mediating treatment response because of the requirement for brief and intermittent stimuli in event related or block designed task paradigms. A relatively new analysis method, functional connectivity fMRI (fcMRI), has great potential for studying continuous treatment modalities such as EA. In a previous study, we found that, compared with sham acupuncture, EA can significantly reduce Periaqueductal Gray (PAG) activity when subsequently evoked by experimental pain. Given the PAG's important role in mediating acupuncture analgesia, in this study we investigated functional connectivity with the area of the PAG we previously identified and how that connectivity was affected by genuine and sham EA. Results Forty-eight subjects, who were randomly assigned to receive either genuine or sham EA paired with either a high or low expectancy manipulation, completed the study. Direct comparison of each treatment mode's functional connectivity revealed: significantly greater connectivity between the PAG, left posterior cingulate cortex (PCC), and precuneus for the contrast of genuine minus sham; significantly greater connectivity between the PAG and right anterior insula for the contrast of sham minus genuine; no significant differences in connectivity between different contrasts of the two expectancy levels. Conclusions Our findings indicate the intrinsic functional connectivity changes among key brain regions in the pain matrix and default mode network during genuine EA compared with sham EA. We speculate that continuous genuine EA stimulation can modify the coupling of spontaneous activity in brain regions that play a role in modulating pain perception.

Full-text

Available from: Randy Lyanne Gollub, Apr 20, 2015
0 Followers
 · 
187 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Beta-endorphin (β-END) is an opioid neuropeptide which has an important role in the development of hypotheses concerning the non-synaptic or paracrine communication of brain messages. This kind of communication between neurons has been designated volume transmission (VT) to differentiate it clearly from synaptic communication. VT occurs over short as well as long distances via the extracellular space in the brain, as well as via the cerebrospinal fluid (CSF) flowing through the ventricular spaces inside the brain and the arachnoid space surrounding the central nervous system (CNS). To understand how β-END can have specific behavioral effects, we use the notion behavioral state, inspired by the concept of machine state, coming from Turing (Proc London Math Soc, Series 2,42:230-265, 1937). In section 1.4 the sequential organization of male rat behavior is explained showing that an animal is not free to switch into another state at any given moment. Funneling-constraints restrict the number of possible behavioral transitions in specific phases while at other moments in the sequence the transition to other behavioral states is almost completely open. The effects of β-END on behaviors like food intake and sexual behavior, and the mechanisms involved in reward, meditation and pain control are discussed in detail. The effects on the sequential organization of behavior and on state transitions dominate the description of these effects.
  • Source
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Parkinson's disease (PD) is a progressive neurodegenerative disease characterized by motor and nonmotor signs and symptoms. To date, many studies of PD have focused on its cardinal motor symptoms. To study the nonmotor signs of early PD, we investigated the reactions solicited by heat pain stimuli in early untreated PD patients without pain using fMRI. The activation patterns of contact heat stimuli (51°C) were assessed in 14 patients and 17 age- and sex-matched healthy controls. Patients with PD showed significant decreases in activation of the superior temporal gyrus (STG) and insula compared with controls. In addition, a significant relationship between activation of the insula and STG and the pain scores was observed in healthy controls but not in PD. This study provided further support that the insula and STG are important parts of the somatosensory circuitry recruited during the period of pain. The hypoactivity of the STG and insula in PD implied that functions including affective, cognitive, and sensory-discriminative processes, which are associated with the insula and STG, were disturbed. This finding supports the view that leaving early PD untreated could be tied directly to central nervous system dysfunction.
    01/2015; 2015:273019. DOI:10.1155/2015/273019