Two-probe study of hot carriers in reduced graphene oxide

Journal of Applied Physics (Impact Factor: 2.19). 03/2011; 109(8). DOI: 10.1063/1.3573674
Source: arXiv

ABSTRACT The energy relaxation of carriers in reduced graphene oxide thin films is
studied using optical pump-probe spectroscopy with two probes of different
colors. We measure the time difference between peaks of the carrier density at
each probing energy by measuring a time-resolved differential transmission and
find that the carrier density at the lower probing energy peaks later than that
at the higher probing energy. Also, we find that the peak time for the lower
probing energy shifts from about 92 to 37 fs after the higher probing energy
peak as the carrier density is increased from 1.5E12 to 3E13 per square
centimeter, while no noticeable shift is observed in that for the higher
probing energy. Assuming the carriers rapidly thermalize after excitation, this
indicates that the optical phonon emission time decreases from about 50 to
about 20 fs and the energy relaxation rate increases from 4 to 10 meV/fs. The
observed density dependence is inconsistent with the phonon bottleneck effect.

  • [Show abstract] [Hide abstract]
    ABSTRACT: Ultra-fast optical measurements of few-layer suspended graphene films grown by chemical vapor deposition were performed with femtosecond pump–probe spectroscopy. The relaxation processes were monitored in transient differential transmission (ΔT/T) after excitation at two different wavelengths of 350 and 680 nm. Intraband electron–electron scattering, electron–phonon scattering, interband Auger recombination and impact ionization were considered to contribute to ΔT/T. All these processes may play important roles in spreading the quasiparticle distribution in time scales up to 100 fs. Optical phonon emission and absorption by highly excited non-equilibrium electrons were identified from ΔT/T peaks in the wide spectral range. When the probe energy region was far from the pump energy, the energy dependence of the quasiparticle decay rate was found to be linear. Longer lifetimes were observed when the quasiparticle population was localized due to optical phonon emission or absorption.
    Applied Physics B 04/2012; 107(1). DOI:10.1007/s00340-011-4853-0 · 1.63 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We report a method to promote photoluminescence emission in graphene materials by enhancing carrier scattering instead of directly modifying band structure in multilayer reduced graphene oxide (rGO) nanospheres. We intentionally curl graphene layers to form nanospheres by reducing graphene oxide with spherical polymer templates to manipulate the carrier scattering. These nanospheres produce hot-carrier luminescence with more than ten-fold improvement of emission efficiency as compared to planar nanosheets. With increasing excitation power, hot-carrier luminescence from nanospheres exhibits abnormal spectral redshift with dynamic feature associated to the strengthened electron-phonon coupling. These experimental results can be well understood by considering the screened Coulomb interactions. With increasing carrier density, the reduced screening effect promotes carrier scattering which enhances hot-carrier emission from such multilayer rGO nanospheres. This carrier-scattering scenario is further confirmed by pump-probe measurements.
    Scientific Reports 07/2013; 3:2315. DOI:10.1038/srep02315 · 5.08 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The origin of near-infrared (NIR) luminescence from graphene oxide (GO) is investigated by photoluminescence (PL) excitation spectroscopy, time-resolved PL spectroscopy, and density functional theory based many body perturbation theories. The energy of experimentally observed NIR PL peak depends on the excitation energy, and the peak broadens with increasing excitation energy. It is found that the PL decay curves in time-resolved spectroscopy show build-up behavior at lower emission energies due to energy transfer between smaller to larger graphene nanodisc (GND) states embedded in GO. We demonstrate that the NIR PL originates from ensemble emission of GND states with a few nanometers in size. The theoretical calculations reveal the electronic and excitonic properties of individual GND states with various sizes, which accounts for the inhomogeneously broadened NIR PL. We further demonstrate that the electronic properties are highly sensitive to the protonation and deprotonation processes of GND states using both the experimental and theoretical approaches.
    Journal of Physical Chemistry Letters 05/2014; 5(10):1754–1759. DOI:10.1021/jz500516u · 6.69 Impact Factor


Available from