193-nm photodissociation of singly and multiply charged peptide anions for acidic proteome characterization

Department of Chemistry and Biochemistry, The University of Texas at Austin, Austin, TX 78712, USA.
Proteomics (Impact Factor: 3.81). 04/2011; 11(7):1329-34. DOI: 10.1002/pmic.201000565
Source: PubMed


193-nm ultraviolet photodissociation (UVPD) was implemented to sequence singly and multiply charged peptide anions. Upon dissociation by this method, a-/x-type, followed by d and w side-chain loss ions, were the most prolific and abundant sequence ions, often yielding 100% sequence coverage. The dissociation behavior of singly and multiply charged anions was significantly different with higher charged precursors yielding more sequence ions; however, all charge states investigated (1- through 3-) produced rich diagnostic information. UVPD at 193  nm was also shown to successfully differentiate and pinpoint labile phosphorylation modifications. The sequence ions were produced with high abundances, requiring limited averaging for satisfactory spectral quality. The intact, charge-reduced radical products generated by UV photoexcitation were also subjected to collision-induced dissociation (termed, activated-electron photodetachment dissociation (a-EPD)), but UVPD alone yielded more predictable and higher abundance sequence ions. With the use of a basic (pH∼11.5), piperidine-modified mobile phase, LC-MS/UVPD was implemented and resulted in the successful analysis of mitogen-activated pathway kinases (MAPKs) using ultrafast activation times (5  ns).

Download full-text


Available from: Tamer Kaoud, Jun 10, 2014
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Despite their lack of selectivity toward c-Jun N-terminal kinase (JNK) isoforms, peptides derived from the JIP (JNK Interacting Protein) scaffolds linked to the cell-penetrating peptide TAT are widely used to investigate JNK-mediated signaling events. To engineer an isoform-selective peptide inhibitor, several JIP-based peptide sequences were designed and tested. A JIP sequence connected through a flexible linker to either the N-terminus of an inverted TAT sequence (JIP(10)-Δ-TAT(i)) or to a poly arginine sequence (JIP(10)-Δ-R(9)) enabled the potent inhibition of JNK2 (IC(50) ≈ 90 nM) and exhibited 10-fold selectivity for JNK2 over JNK1 and JNK3. Examination of both peptides in HEK293 cells revealed a potent ability to inhibit the induction of both JNK activation and c-Jun phosphorylation in cells treated with anisomycin. Notably, Western blot analysis indicates that only a fraction of total JNK must be activated to elicit robust c-Jun phosphorylation. To examine the potential of each peptide to selectively modulate JNK2 signaling in vivo, their ability to inhibit the migration of Polyoma Middle-T Antigen Mammary Tumor (PyVMT) cells was assessed. PyVMTjnk2-/- cells exhibit a lower migration potential compared to PyVMTjnk2+/+ cells, and this migration potential is restored through the overexpression of GFP-JNK2α. Both JIP(10)-Δ-TAT(i) and JIP(10)-Δ-R(9) inhibit the migration of PyVMTjnk2+/+ cells and PyVMTjnk2-/- cells expressing GFP-JNK2α. However, neither peptide inhibits the migration of PyVMTjnk2-/- cells. A control form of JIP(10)-Δ-TAT(i) containing a single leucine to arginine mutation lacks ability to inhibit JNK2 in vitro cell-free and cell-based assays and does not inhibit the migration of PyVMTjnk2+/+ cells. Together, these data suggest that JIP(10)-Δ-TAT(i) and JIP(10)-Δ-R(9) inhibit the migration of PyVMT cells through the selective inhibition of JNK2. Finally, the mechanism of inhibition of a D-retro-inverso JIP peptide, previously reported to inhibit JNK, was examined and found to inhibit p38MAPKα in an in vitro cell-free assay with little propensity to inhibit JNK isoforms.
    ACS Chemical Biology 03/2011; 6(6):658-66. DOI:10.1021/cb200017n · 5.33 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The utility of 193-nm ultraviolet photodissociation (UVPD) and 10.6-μm infrared multiphoton dissociation (IRMPD) for the characterization of lipid A structures was assessed in an ion trap mass spectrometer. The fragmentation behavior of lipid A species was also evaluated by activated-electron photodetachment (a-EPD), which uses 193-nm photons to create charge reduced radicals that are subsequently dissociated by collisional activation. In contrast to collision-induced dissociation (CID), IRMPD offered the ability to selectively differentiate product ions with varying degrees of phosphorylation because of the increased photoabsorption cross sections and thus dissociation of phosphate-containing species. Both 193-nm UVPD and a-EPD yielded higher abundances and a larger array of product ions arising from C-C cleavages, as well as cross-ring and inter-ring glucosamine cleavages, compared to CID and IRMPD, because of high energy, single-photon absorption, and/or radical-directed dissociation. UVPD at 193 nm also exhibited enhanced cleavage between the amine and carbonyl groups on the 2- and 2'-linked primary acyl chains. Lastly, UVPD of phosphorylethanolamine-modified lipid A species resulted in preferential cleavage of the C-O bond between ethanolamine and phosphate, enabling the selective identification of this modification.
    Analytical Chemistry 06/2011; 83(13):5107-13. DOI:10.1021/ac103271w · 5.64 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Gold(I)– and silver(I)–thiolate oligomers generated under nanoparticle growth conditions have been suggested to play an important role in the growth mechanism of thiolate-protected noble metal clusters. In this work, we explore the formation of isolated noble metal–glutathione complexes by complementing electrospray mass spectrometry and optical action spectroscopy with TDDFT calculations. We have isolated and recorded action spectra of [Au+GSH–2H]−, [Ag+GSH–2H]−, and [3Ag+2GSH–4H]− complexes. Competition between photofragmentation and photodetachment channels related to electron binding energies was observed. Our findings show that, although structural properties of silver and gold metal–glutathione oligomers are similar, their optical properties in the UV range differ substantially. The experimental spectra were interpreted and assigned by comparison with TDDFT simulations, which allowed us to identify the key role of O–metal–S subunits and characterize their optical properties depending on the choice of metal.
    The Journal of Physical Chemistry C 11/2011; 115(50):24549. DOI:10.1021/jp207158v · 4.77 Impact Factor
Show more