Article

Compensation algorithm for the phase-shift error of polarization-based parallel two-step phase-shifting digital holography.

Graduate School of Science and Technology, Kyoto Institute of Technology, Matsugasaki, Kyoto 606-8585, Japan.
Applied Optics (Impact Factor: 1.69). 03/2011; 50(7):B31-7. DOI: 10.1364/AO.50.000B31
Source: PubMed

ABSTRACT We propose an algorithm for compensating the phase-shift error of polarization-based parallel two-step phase-shifting digital holography, which is a technique for recording a spatial two-step phase-shifted hologram. Although a polarization-based system of the technique has been experimentally demonstrated, there had been the problem that the phase difference of two phase-shifted holograms had been changed by the extinction ratio of the micropolarizer array attached to the image sensor used in the system. To improve the performance of the system, we established and formulated an algorithm for compensating the phase-shift error. Accurate spatial phase-shifting interferometry in the system can be conducted by the algorithm regardless of phase-shift error due to the extinction ratio. By the numerical simulation, the proposed algorithm was capable of reducing the root mean square errors of the reconstructed image by 1/4 and 1/5 in amplitude and phase, respectively. Also, the algorithm was experimentally demonstrated, and the experimental results showed that the system employing the proposed algorithm suppressed the conjugate image, which slightly appeared in the image reconstructed by the system not employing the algorithm, even when the extinction ratio was 10:1. Thus, the effectiveness of the proposed algorithm was numerically and experimentally verified.

0 Bookmarks
 · 
89 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: We propose a parallel phase-shifting digital holography using a spectral estimation technique, which enables the instantaneous acquisition of spectral information and three-dimensional (3D) information of a moving object. In this technique, an interference fringe image that contains six holograms with two phase shifts for three laser lines, such as red, green, and blue, is recorded by a space-division multiplexing method with single-shot exposure. The 3D monochrome images of these three laser lines are numerically reconstructed by a computer and used to estimate the spectral reflectance distribution of object using a spectral estimation technique. Preliminary experiments demonstrate the validity of the proposed technique.
    Applied Optics 09/2014; 53(27). DOI:10.1364/AO.53.00G123 · 1.69 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: We comparatively evaluated two types of image-reconstruction algorithms in two types of single-shot phase-shifting digital holography techniques to investigate which algorithm is more suitable for high-quality and instantaneous three-dimensional imaging. Two types of image-reconstruction algorithms were proposed for each single-shot phase-shifting interferometry so far. One generates multiple phase-shifted holograms from the recorded single hologram by utilizing interpolation and derives the complex amplitude of the object wave by applying the calculation of phase-shifting interferometry to the multiple phase-shifted holograms. The other does not use interpolation but applies the calculation of phase-shifting interferometry to the neighboring pixels in the recorded hologram to derive the complex amplitude. We experimentally evaluated the qualities of the image reconstructed by the algorithms in each single-shot phase-shifting technique. It was clarified that the former algorithm is more effective for high-quality imaging free from the unwanted images in single-shot technique using an array of optical elements. In single-shot technique using spatial carrier, although the latter algorithm is able to reconstruct a brighter image for wide area than the former, spatial-filtering technique is needed for removing the conjugate image.
    Journal of Electronic Imaging 01/2012; 21(1):3021-. DOI:10.1117/1.JEI.21.1.013021 · 0.85 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Parallel phase-shifting digital holography (PPSDH) is a technique of single-shot phase-shifting digital holography. We found that there are two problems with this technique. (1) Some extraneous noises caused by the intensity unevenness of the reference wave become slightly superimposed on the object image. (2) The conjugate image cannot be completely removed. This is because the object wave causes the phase-shift error by illuminating an image sensor with a large incident angle. To solve these problems, we propose an algorithm for removing residual 0th-order diffraction and conjugate images in PPSDH. In the proposed algorithm, we modified phase-shifting interferometry in order to work through the unevenness of the intensity distribution and applied the Fourier transform technique to PPSDH to remove the residual conjugate image. The effectiveness of the proposed algorithm was experimentally verified.
    Optical Review 01/2013; 20(1). DOI:10.1007/s10043-013-0002-9 · 0.55 Impact Factor