Article

Phase-contrast magnetic resonance angiography measurements of global cerebral blood flow in the neonate.

Department of Neonatology, Wilhelmina Children's Hospital, University Medical Center, 3508 AB Utrecht, The Netherlands.
Pediatric Research (Impact Factor: 2.67). 02/2011; 69(6):544-7. DOI:10.1203/PDR.0b013e3182176aab
Source: PubMed

ABSTRACT Cerebral blood flow (CBF) alterations are important in pathogenesis of neonatal ischemic/hemorrhagic brain damage. In clinical practice, estimation of neonatal CBF is mostly based on Doppler-measured blood flow velocities in major intracranial arteries. Using phase-contrast magnetic resonance angiography (PC-MRA), global CBF can be estimated, but there is limited neonatal experience. The objective of this study was to gain experience with PC-MRA for the determination of global CBF in neonates. In infants eligible for MRI, PC-MRA global CBF was determined by measuring volume blood flow in both internal carotid arteries (ICAs) and basilar artery (BA). Thirty newborns (GA, 25.7-42.1 wk; weight, 1050-5858 g; postconceptional age, 225-369 d) were investigated. Total PC-MRA CBF ranged from 27 to 186 mL/min. Significant correlations between PC-MRA CBF and postconceptional age and weight were detected. When calculating PC-MRA measured CBF per kilogram body weight, brain perfusion was about stable over the range of postconceptional ages and ranged between 11 and 48 mL/min/kg (median, 25 mL/min/kg). In conclusion, neonatal PC-MRA CBF seems to be a useful technique to estimate noninvasive CBF.

0 0
 · 
0 Bookmarks
 · 
61 Views
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: Alterations in cerebral blood flow (CBF) are believed to be linked to many of the neurological pathologies that affect neonates and small infants. CBF measurements are nonetheless often difficult to perform in this population, as many techniques rely on radioactive tracers or other invasive methods. In this study, mean global CBF was measured in 21 infants under the age of one, using non-invasive MRI techniques adapted to the neonatal population. Mean CBF was computed as the ratio of blood flow delivered to the brain (measured using phase contrast MRI) and brain volume (computed by segmenting anatomical MR images). Tests in adult volunteers and repeated measurements showed the flow measurements using the proposed method to be both accurate and reproducible. It was also found that cardiac gating need not be employed in infants with no known cardiac pathology. The developed technique can easily be appended to a neonatal MRI examination to provide rapid, robust, and non-invasive estimates of mean CBF, thus providing a means to monitor developmental or pathology-related alterations in cerebral perfusion and the impact of different treatment courses. In the imaged cohort, mean CBF and flow to the brain were found to rapidly increase during the first year of life (from approx. 25 to 60 ml blood/100 ml tissue/min), in good agreement with literature from other modalities where available. Mean CBF also showed a significant correlation with arterial oxygen saturation level and heart rate, but no significant correlation was found between CBF and the hematocrit or body temperature.
    NMR in Biomedicine 01/2012; 25(9):1063-72. · 3.45 Impact Factor
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: Little is known about changes in carotid blood flow after perinatal arterial ischemic stroke (PAIS). The aim of this study was to assess the blood flow in the internal carotid arteries (ICAs) after unilateral PAIS. The carotid flow (ml/min) was measured noninvasively by means of two-dimensional phase-contrast magnetic resonance angiography (2D PC-MRA) in 25 full-term infants who had unilateral PAIS within 10 d after birth. In 17 infants a second 2D PC-MRA was carried out at the age of 3 mo. Asymmetry of carotid blood flow was calculated at both time points, and the circle of Willis (CoW) was assessed with a three-dimensional (3D) time-of-flight MRA. On the early magnetic resonance imaging (MRI), a significant increase in ipsilateral blood flow was observed (7.7%, 95% confidence interval (CI) 3.0-14.9%), which persisted after correcting for CoW configuration. At 3 mo, this asymmetry was no longer observed. No relationship was found between the asymmetry in blood flow and either stroke size or postnatal age at scan. A higher blood flow in the ipsilateral ICA was observed during the acute phase after unilateral PAIS, and this disappeared after 3 mo. Further research into the role of hyperperfusion after PAIS may suggest new approaches to neuroprotection.
    Pediatric Research 03/2012; 72(1):50-6. · 2.67 Impact Factor
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: The echocardiographic assessment of circulatory function in sick newborn infants has the potential to improve patient care. However, measurements are prone to error and have not been sufficiently validated. Phase-contrast magnetic resonance imaging (MRI) provides highly validated measures of blood flow and has recently been applied to the newborn population. The aim of this study was to validate measures of left ventricular output and superior vena caval flow volume in newborn infants. Echocardiographic and MRI assessments were performed within 1 working day of each other in a cohort of newborn infants. Examinations were performed in 49 infants with a median corrected gestational age at scan of 34.43 weeks (range, 27.43-40 weeks) and a median weight at scan of 1,880 g (range, 660-3,760 g). Echocardiographic assessment of left ventricular output showed a strong correlation with MRI assessment (R(2) = 0.83; mean bias, -9.6 mL/kg/min; limits of agreement, -79.6 to +60.0 mL/kg/min; repeatability index, 28.2%). Echocardiographic assessment of superior vena caval flow showed a poor correlation with MRI assessment (R(2) = 0.22; mean bias, -13.7 mL/kg/min; limits of agreement, -89.1 to +61.7 mL/kg/min; repeatability index, 68.0%). Calculating superior vena caval flow volume from an axial area measurement and applying a 50% reduction to stroke distance to compensate for overestimation gave a slightly improved correlation with MRI (R(2) = 0.29; mean bias, 2.6 mL/kg/min; limits of agreement, -53.4 to +58.6 mL/kg/min; repeatability index, 54.5%). Echocardiographic assessment of left ventricular output appears relatively robust in newborn infant. Echocardiographic assessment of superior vena caval flow is of limited accuracy in this population, casting doubt on the utility of the measurement for diagnostic decision making.
    Journal of the American Society of Echocardiography: official publication of the American Society of Echocardiography 09/2013; · 2.98 Impact Factor

Full-text

View
0 Downloads
Available from