Frizzled 4 regulates stemness and invasiveness of migrating glioma cells established by serial intracranial transplantation.

School of Life Sciences and Biotechnology, Korea University, Seoul, Republic of Korea.
Cancer Research (Impact Factor: 9.28). 03/2011; 71(8):3066-75. DOI: 10.1158/0008-5472.CAN-10-1495
Source: PubMed

ABSTRACT One of the most detrimental hallmarks of glioblastoma multiforme (GBM) is cellular invasiveness, which is considered a potential cause of tumor recurrence. Infiltrated GBM cells are difficult to completely eradicate surgically and with local therapeutic modalities. Although much effort has focused on understanding the various mechanisms controlling GBM invasiveness, its nature remains poorly understood. In this study, we established highly serial intracranial transplantation. U87R4 cells were highly invasive and displayed stem cell-like properties, as compared to noninvasive but proliferative U87L4 cells. Microarray analysis during serial transplantation revealed that apoptosis-inducing genes (caspase3 and PDCD4) were downregulated whereas several cancer stem cell-relevant genes [Frizzled 4 (FZD4) and CD44] were upregulated in more invasive cells. U87R4 cells were resistant to anticancer drug-induced cell death, partly due to downregulation of caspase3 and PDCD4, and they retained activated Wnt/β-catenin signaling due to upregulation of Frizzled 4, which was sufficient to control neurosphere formation. We also found that FZD4 promoted expression of the epithelial to mesenchymal transition regulator SNAI1, along with acquisition of a mesenchymal phenotype. Taken together, our results argue that Frizzled 4 is a member of the Wnt signaling family that governs both stemness and invasiveness of glioma stem cells, and that it may be a major cause of GBM recurrence and poor prognosis.

  • [Show abstract] [Hide abstract]
    ABSTRACT: Glioblastoma Multiforme (GBM) is a grade IV astrocytoma, with a median survival of 14.6 mo. Within GBM, stem-like cells, namely glioblastoma stem cells (GSCs), have the ability to self-renew, differentiate into distinct lineages within the tumor and initiate tumor xenografts in immunocompromised animal models. More importantly, GSCs utilize cell-autonomous and tumor microenvironment-mediated mechanisms to overcome current therapeutic approaches. They are, therefore, very important therapeutic targets. Although the functional criteria defining GSCs are well defined, their molecular characteristics, the mechanisms whereby they establish the cellular hierarchy within tumors, and their contribution to tumor heterogeneity are not well understood. This review is aimed at summarizing current findings about GSCs and their therapeutic importance from a molecular and cellular point of view. A better characterization of GSCs is crucial for designing effective GSC-targeted therapies.
    World journal of stem cells. 04/2014; 6(2):230-238.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Chemokines are crucial autocrine and paracrine players in tumor development. In particular, CXCL12, through its receptors CXCR4 and CXCR7, affects tumor progression by controlling cancer cell survival, proliferation and migration, and, indirectly, via angiogenesis or recruiting immune cells. Glioblastoma (GBM) is the most prevalent primary malignant brain tumor in adults and despite current multimodal therapies it remains almost incurable. The aggressive and recurrent phenotype of GBM is ascribed to high growth rate, invasiveness to normal brain, marked angiogenesis, ability to escape the immune system and resistance to standard of care therapies. Tumor molecular and cellular heterogeneity severely hinders GBM therapeutic improvement. In particular, a subpopulation of chemo- and radio-therapy resistant tumorigenic cancer stem-like cells (CSCs) is believed to be the main responsible for tumor cell dissemination to the brain. GBM cells display heterogeneous expression levels of CXCR4 and CXCR7 that are overexpressed in CSCs, representing a molecular correlate for the invasive potential of GBM. The microenvironment contribution in GBM development is increasingly emphasized. An interplay exists between CSCs, differentiated GBM cells, and the microenvironment, mainly through secreted chemokines (e.g., CXCL12) causing recruitment of fibroblasts, endothelial, mesenchymal and inflammatory cells to the tumor, via specific receptors such as CXCR4. This review covers recent developments on the role of CXCL12/CXCR4-CXCR7 networks in GBM progression and the potential translational impact of their targeting. The biological and molecular understanding of the heterogeneous GBM cell behavior, phenotype and signaling is still limited. Progress in the identification of chemokine-dependent mechanisms that affect GBM cell survival, trafficking and chemo-attractive functions, opens new perspectives for development of more specific therapeutic approaches that include chemokine-based drugs.
    Frontiers in Cellular Neuroscience 05/2014; 8:144. · 4.47 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Glioblastoma multiforme (GBM) is by far the most common and most aggressive malignant primary tumor in humans and has poor outcomes despite many advances in treatment using combinations of surgery, radiotherapy and chemotherapy. Recent studies demonstrate that GBM contains a subpopulation of cancer cells with stem cell characteristics, including self-renewal and multipotentiality, and that these cancer stem cells contribute to disease progression. MicroRNAs (miRNAs) are small non-coding regulatory RNA molecules that regulate a variety of cellular processes, including stem cell maintenance. An accumulating body of evidence shows that miR-218 may act as a tumor suppressor by inhibiting glioblastoma invasion, migration, proliferation and stemness through its different targets, indicating the great potential and relevance of miR-218 as a novel class of therapeutic target in glioblastoma.
    Cancer Letters 07/2014; · 4.26 Impact Factor