Article

A randomized, double-blind, placebo-controlled, parallel-group, enriched-design study of nabiximols (Sativex (R)), as add-on therapy, in subjects with refractory spasticity caused by multiple sclerosis

Krajska nemocnice Pardubice, Neurologicke odd, Paradubice, Czech Republic.
European Journal of Neurology (Impact Factor: 3.85). 03/2011; 18(9):1122-31. DOI: 10.1111/j.1468-1331.2010.03328.x
Source: PubMed

ABSTRACT   Spasticity is a disabling complication of multiple sclerosis, affecting many patients with the condition. We report the first Phase 3 placebo-controlled study of an oral antispasticity agent to use an enriched study design.
  A 19-week follow-up, multicentre, double-blind, randomized, placebo-controlled, parallel-group study in subjects with multiple sclerosis spasticity not fully relieved with current antispasticity therapy. Subjects were treated with nabiximols, as add-on therapy, in a single-blind manner for 4weeks, after which those achieving an improvement in spasticity of ≥20% progressed to a 12-week randomized, placebo-controlled phase.
  Of the 572 subjects enrolled, 272 achieved a ≥20% improvement after 4weeks of single-blind treatment, and 241 were randomized. The primary end-point was the difference between treatments in the mean spasticity Numeric Rating Scale (NRS) in the randomized, controlled phase of the study. Intention-to-treat (ITT) analysis showed a highly significant difference in favour of nabiximols (P=0.0002). Secondary end-points of responder analysis, Spasm Frequency Score, Sleep Disturbance NRS Patient, Carer and Clinician Global Impression of Change were all significant in favour of nabiximols.
  The enriched study design provides a method of determining the efficacy and safety of nabiximols in a way that more closely reflects proposed clinical practice, by limiting exposure to those patients who are likely to benefit from it. Hence, the difference between active and placebo should be a reflection of efficacy and safety in the population intended for treatment.

0 Bookmarks
 · 
283 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Sativex is an emergent treatment option for spasticity in patients affected by multiple sclerosis (MS). This oromucosal spray, acting as a partial agonist at cannabinoid receptors, may modulate the balance between excitatory and inhibitory neurotransmitters, leading to muscle relaxation that is in turn responsible for spasticity improvement. Nevertheless, since the clinical assessment may not be sensitive enough to detect spasticity changes, other more objective tools should be tested to better define the real drug effect. The aim of our study was to investigate the role of Sativex in improving spasticity and related symptomatology in MS patients by means of an extensive neurophysiological assessment of sensory-motor circuits. To this end, 30 MS patients underwent a complete clinical and neurophysiological examination, including the following electrophysiological parameters: motor threshold, motor evoked potentials amplitude, intracortical excitability, sensory-motor integration, and Hmax/Mmax ratio. The same assessment was applied before and after one month of continuous treatment. Our data showed an increase of intracortical inhibition, a significant reduction of spinal excitability, and an improvement in spasticity and associated symptoms. Thus, we can speculate that Sativex could be effective in reducing spasticity by means of a double effect on intracortical and spinal excitability.
    Neural Plasticity 01/2015; 2015:656582. DOI:10.1155/2015/656582 · 3.60 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Therapeutic effects of physical therapy in neurologic disorders mostly rely on the promotion of use-dependent synaptic plasticity in damaged neuronal circuits. Genetic differences affecting the efficiency of synaptic plasticity mechanisms could explain why some patients do not respond adequately to the treatment. It is known that physical exercise activates the endocannabinoid system and that stimulation of cannabinoid CB1 receptors (CB1Rs) promotes synaptic plasticity in both rodents and humans. We thus tested whether CB1R genetic variants affect responsiveness to exercise therapy. We evaluated the effect of a genetic variant of the CB1R associated with reduced receptor expression (patients with long AAT trinucleotide short tandem repeats in the CNR1 gene) on long-term potentiation (LTP)-like cortical plasticity induced by transcranial magnetic theta burst stimulation (TBS) of the motor cortex and, in parallel, on clinical response to exercise therapy in patients with multiple sclerosis. We found that patients with long AAT CNR1 repeats do not express TBS-induced LTP-like cortical plasticity and show poor clinical benefit after exercise therapy. Our results provide the first evidence that genetic differences within the CB1R may influence clinical responses to exercise therapy, and they strengthen the hypothesis that CB1Rs are involved in the regulation of synaptic plasticity and in the control of spasticity in humans. This information might be of great relevance for patient stratification and personalized rehabilitation treatment programs.
    12/2014; 1(4):e48. DOI:10.1212/NXI.0000000000000048
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Multiple sclerosis (MS) is the major immune-mediated, demyelinating, neurodegenerative disease of the central nervous system. Compounds within cannabis, notably Δ9-tetrahydrocannabinol (Δ9-THC) can limit the inappropriate neurotransmissions that cause MS-related problems and medicinal cannabis is now licenced for the treatment of MS symptoms. However, the biology indicates that the endocannabinoid system may offer the potential to control other aspects of disease. Although there is limited evidence that the cannabinoids from cannabis are having significant immunosuppressive activities that will influence relapsing autoimmunity, we and others can experimentally demonstrate that they may limit neurodegeneration that drives progressive disability. Here we show that synthetic cannabidiol can slow down the accumulation of disability from the inflammatory penumbra during relapsing experimental autoimmune encephalomyelitis (EAE) in ABH mice, possibly via blockade of voltage-gated sodium channels. In addition, whilst non-sedating doses of Δ9-THC do not inhibit relapsing autoimmunity, they dose-dependently inhibit the accumulation of disability during EAE. They also appear to slow down clinical progression during MS in humans. Although a 3 year, phase III clinical trial did not detect a beneficial effect of oral Δ9-THC in progressive MS, a planned subgroup analysis of people with less disability who progressed more rapidly, demonstrated a significant slowing of progression by oral Δ9-THC compared to placebo. Whilst this may support the experimental and biological evidence for a neuroprotective effect by the endocannabinoid system in MS, it remains to be established whether this will be formally demonstrated in further trials of Δ9-THC/cannabis in progressive MS.
    Journal of Neuroimmune Pharmacology 12/2014; DOI:10.1007/s11481-014-9575-8 · 3.17 Impact Factor