Synthesis of the (N2)3- radical from Y2+ and its protonolysis reactivity to form (N2H2)2- via the Y[N(SiMe3)2]3/KC8 reduction system.

Department of Chemistry, University of California, Irvine, California 92697-2025, United States.
Journal of the American Chemical Society (Impact Factor: 10.68). 03/2011; 133(11):3784-7. DOI:10.1021/ja1116827
Source: PubMed

ABSTRACT Examination of the Y[N(SiMe(3))(2)](3)/KC(8) reduction system that allowed isolation of the (N(2))(3-) radical has led to the first evidence of Y(2+) in solution. The deep-blue solutions obtained from Y[N(SiMe(3))(2)](3) and KC(8) in THF at -35 °C under argon have EPR spectra containing a doublet at g(iso) = 1.976 with a 110 G hyperfine coupling constant. The solutions react with N(2) to generate (N(2))(2-) and (N(2))(3-) complexes {[(Me(3)Si)(2)N](2)(THF)Y}(2)(μ-η(2):η(2)-N(2)) (1) and {[(Me(3)Si)(2)N](2)(THF)Y}(2)(μ-η(2):η(2)-N(2))[K(THF)(6)] (2), respectively, and demonstrate that the Y[N(SiMe(3))(2)](3)/KC(8) reaction can proceed through an Y(2+) intermediate. The reactivity of (N(2))(3-) radical with proton sources was probed for the first time for comparison with the (N(2))(2-) and (N(2))(4-) chemistry. Complex 2 reacts with [Et(3)NH][BPh(4)] to form {[(Me(3)Si)(2)N](2)(THF)Y}(2)(μ-N(2)H(2)), the first lanthanide (N(2)H(2))(2-) complex derived from dinitrogen, as well as 1 as a byproduct, consistent with radical disproportionation reactivity.

0 0
  • [show abstract] [hide abstract]
    ABSTRACT: Rare earth metals activated with ca. 2% iodine react directly with 2,6-diisopropylphenol (HOdip) in tetrahydrofuran (thf), 1,2-dimethoxyethane (dme), and dig-dme (dig = di(2-methoxyethyl) ether) to give solvated phenolate complexes [Ln(Odip)(3)(thf)(n)] (Ln = La, Nd, n = 3; Ln = Sm, Dy, Y, Yb, n = 2), [Eu(Odip)(μ-Odip)(thf)(2)](2), [Ln(Odip)(3)(dme)(2)] (Ln = La, Yb) and [La(Odip)(3)(dig)] in good yield for Ln = La, Nd, Eu but modest yield for smaller Ln metals under comparable conditions. However, increasing the excess of metal greatly increased the yield for Ln = Y. The synthetic method has general potential, at least for lanthanoid phenolates. Comparison redox transmetallation/protolysis (RTP) reactions between Ln metals, Hg(C(6)F(5))(2) and the phenol gave higher yields in shorter time and, for Eu, gave [Eu(Odip)(3)(thf)(3)] in contrast to an Eu(II) complex from Eu(I(2)). New [Ln(Odip)(3)(thf)(3)] complexes have fac-octahedral structures and [Ln(Odip)(3)(thf)(2)] monomeric five coordinate distorted trigonal bipyramidal structures with apical thf ligands. [Eu(Odip)(μ-Odip)(thf)(2)](2) is an unsymmetrical dimer with two bridging Odip ligands. One five coordinate Eu atom has distorted trigonal bipyramidal stereochemistry and the other is distorted square pyramidal. Whilst [La(Odip)(3)(dme)(2)] has irregular seven coordination with mer-Odip and chelating dme ligands, [Ln(Odip)(3)(dme)(2)] (Ln = Dy, Y (prepared by ligand exchange), Yb) are monomeric six coordinate with one chelating and one unidentate dme. A six coordinate fac-octahedral arrangement is observed in [La(Odip)(3)(dig)].
    Dalton Transactions 03/2012; 41(12):3541-52. · 3.81 Impact Factor
  • [show abstract] [hide abstract]
    ABSTRACT: The La(2+) complex [K(18-crown-6)(OEt(2))][Cp″(3)La] (1) [Cp″ = C(5)H(3)(SiMe(3))(2)-1,3], can be synthesized under N(2), but in the presence of KC(5)Me(5), 1 reduces N(2) to the (N═N)(2-) product [(C(5)Me(5))(2)(THF)La](2)(μ-η(2):η(2)-N(2)). This suggests a dichotomy in terms of ligands that optimize isolation of reduced dinitrogen complexes versus isolation of divalent complexes of the rare earths. To determine whether the first crystalline molecular Y(2+) complex could be isolated using this logic, Cp'(3)Y (2) (Cp' = C(5)H(4)SiMe(3)) was synthesized from YCl(3) and KCp' and reduced with KC(8) in the presence of 18-crown-6 in Et(2)O at -45 °C under argon. EPR evidence was consistent with Y(2+) and crystallization provided the first structurally characterizable molecular Y(2+) complex, dark-maroon-purple [(18-crown-6)K][Cp'(3)Y] (3).
    Journal of the American Chemical Society 09/2011; 133(40):15914-7. · 10.68 Impact Factor
  • [show abstract] [hide abstract]
    ABSTRACT: Reactions proceeding through open-shell, single-electron pathways offer attractive alternative outcomes to those proceeding through closed-shell, two-electron mechanisms. In this context, samarium diiodide (SmI(2) ) has emerged as one of the most important and convenient-to-use electron-transfer reagents available in the laboratory. Recently, significant progress has been made in the reductive chemistry of other divalent lanthanides which for many years had been considered too reactive to be of value to synthetic chemists. Herein, we illustrate how new samarium(II) complexes and nonclassical lanthanide(II) reagents are changing the landscape of modern reductive chemistry.
    Angewandte Chemie International Edition 08/2012; 51(37):9238-56. · 13.73 Impact Factor