PA28 and the proteasome immunosubunits play a central and independent role in the production of MHC class I-binding peptides in vivo

Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, University of Utrecht, Utrecht, The Netherlands.
European Journal of Immunology (Impact Factor: 4.52). 04/2011; 41(4):926-35. DOI: 10.1002/eji.201041040
Source: PubMed

ABSTRACT Proteasomes play a fundamental role in the processing of intracellular antigens into peptides that bind to MHC class I molecules for the presentation of CD8(+) T cells. Three IFN-γ-inducible catalytic proteasome (immuno)subunits as well as the IFN-γ-inducible proteasome activator PA28 dramatically accelerate the generation of a subset of MHC class I-presented antigenic peptides. To determine whether these IFN-γ-inducible proteasome components play a compounded role in antigen processing, we generated mice lacking both PA28 and immunosubunits β5i/LMP7 and β2i/MECL-1. Analyses of MHC class I cell-surface levels ex vivo demonstrated that PA28 deficiency reduced the production of MHC class I-binding peptides both in cells with and without immunosubunits, in the latter cells further decreasing an already diminished production of MHC ligands in the absence of immunoproteasomes. In contrast, the immunosubunits but not PA28 appeared to be of critical importance for the induction of CD8(+) T-cell responses to multiple dominant Influenza and Listeria-derived epitopes. Taken together, our data demonstrate that PA28 and the proteasome immunosubunits use fundamentally different mechanisms to enhance the supply of MHC class I-binding peptides; however, only the immunosubunit-imposed effects on proteolytic epitope processing appear to have substantial influence on the specificity of pathogen-specific CD8(+) T-cell responses.

Download full-text


Available from: E.J.A.M. Sijts, Jul 08, 2015
1 Follower
  • Source
    • "However, this speculation still needs further investigation. It was thought that PA28a/b complexes have a role of activating proteasomes to generate the antigenic peptides presented by MHC class I molecules [27] [32]. Therefore, interfering effect of Naa10p on PA28-regulated chymotrypsin-like proteasome activity might impair tumor antigenic peptides presentation, or shift the repertoire of tumor-associated antigens presented by MHC class I, which may result in cells escaping from immunosurveillance and malignant transformation. "
    [Show abstract] [Hide abstract]
    ABSTRACT: N-α-acetyltransferase 10 protein (Naa10p) regulates various pathways associated with cancer cell proliferation, metastasis, apoptosis and autophagy. However, its role in protein quality control is unknown. Here, we report that Naa10p is physically associated with proteasome activator 28β (PA28β). Naa10p also interacts with PA28α in a PA28β-dependent manner. Naa10p negatively regulates PA28-dependent chymotrypsin-like proteasome activity in cancer cells and in a cell-free system reconstituted with purified proteins, which was not related to 26S proteasome. Acetyltransferase activity of Naa10p isn't required for its effect on chymotrypsin-like proteasome activity. Therefore, our data reveal that Naa10p suppresses 28S proteasome activity through interaction with PA28β. STRUCTURED SUMMARY OF PROTEIN INTERACTIONS: Naa10pphysically interactswithPS28alphaandPS28 betabyanti bait coimmunoprecipitation(View Interaction:1,2).
    FEBS letters 04/2013; 587(11). DOI:10.1016/j.febslet.2013.04.016 · 3.34 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The NS1 protein of influenza virus counters host antiviral defences primarily by antagonizing the type I interferon (IFN) response. Both the N-terminal dsRNA-binding domain and the C-terminal effector domain are required for optimal suppression of host responses during infection. To better understand the regulatory role of the NS1 effector domain, we used an NS1-truncated mutant virus derived from human H1N1 influenza isolate A/Texas/36/91 (Tx/91) and assessed global transcriptional profiles from two independent human lung cell-culture models. Relative to the wild-type Tx/91-induced gene expression, the NS1 mutant virus induced enhanced expression of innate immune genes, specifically NF-κB signalling-pathway genes and IFN-α and -β target genes. We queried an experimentally derived IFN gene set to gauge the proportion of IFN-responsive genes that are suppressed specifically by NS1. We show that the C-terminally truncated NS1 mutant virus is less efficient at suppressing IFN-regulated gene expression associated with activation of antigen-presentation and immune-proteasome pathways. This is the first report integrating genomic analysis from two independent human culture systems, including primary lung cells, using genetically similar H1N1 influenza viruses that differ only in the length of the NS1 protein.
    Journal of General Virology 05/2011; 92(Pt 9):2093-104. DOI:10.1099/vir.0.032060-0 · 3.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Natural killer (NK) cells are part of the innate immune system and contribute to the eradication of virus infected cells and tumors. NK cells express inhibitory and activating receptors and their decision to kill a target cell is based on the balance of signals received through these receptors. MHC class I molecules are recognized by inhibitory receptors, and their presence during NK cell education influences the responsiveness of peripheral NK cells. We here demonstrate that mice with reduced MHC class I cell surface expression, due to deficiency of immunoproteasomes, have responsive NK cells in the periphery, indicating that the lower MHC class I levels do not alter NK cell education. Following adoptive transfer into wild-type (wt) recipients, immunoproteasome-deficient splenocytes are tolerated in naive but rejected in virus-infected recipients, in an NK cell dependent fashion. These results indicate that the relatively low MHC class I levels are sufficient to protect these cells from rejection by wt NK cells, but that this tolerance is broken in infection, inducing an NK cell-dependent rejection of immunoproteasome-deficient cells.
    PLoS ONE 08/2011; 6(8):e23769. DOI:10.1371/journal.pone.0023769 · 3.53 Impact Factor