Article

Association of a functional IRF7 variant with systemic lupus erythematosus.

University of California, Los Angeles, and Joint Molecular Rheumatology Laboratory of Institute of Health Sciences and Shanghai Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Institutes for Biological Sciences, and Chinese Academy of Sciences, Shanghai, China.
Arthritis & Rheumatology (Impact Factor: 7.48). 03/2011; 63(3):749-54. DOI:10.1002/art.30193
Source: PubMed

ABSTRACT A previous genome-wide association study conducted in a population of European ancestry identified rs4963128, a KIAA1542 single-nucleotide polymorphism (SNP) 23 kb telomeric to IRF7 (the gene for interferon regulatory factor 7 [IRF-7]), to be strongly associated with systemic lupus erythematosus (SLE). This study was undertaken to investigate whether genetic polymorphism within IRF7 is a risk factor for the development of SLE.
We genotyped one KIAA1542 SNP (rs4963128) and one IRF7 SNP (rs1131665 [Q412R]) in an Asian population (1,302 cases, 1,479 controls), to assess their association with SLE. Subsequently, rs1131665 was further genotyped in independent panels of Chinese subjects (528 cases, 527 controls), European American subjects (446 cases, 461 controls), and African American subjects (159 cases, 115 controls) by TaqMan genotyping assay, to seek confirmation of association in various ethnic groups. A luciferase reporter assay was used to assess the effect of Q412R polymorphism on the activation of IRF-7.
Consistent association of rs1131665 (Q412R) with SLE was identified in Asian, European American, and African American populations (total 2,435 cases and 2,582 controls) (P(meta) = 6.18 × 10(-6) , odds ratio 1.42 [95% confidence interval 1.22-1.65]). Expression of the IRF7 412Q risk allele resulted in a 2-fold increase in interferon-stimulated response element transcriptional activity compared with expression of IRF7 412R (P = 0.0003), suggesting that IRF7 412Q confers elevated IRF-7 activity and may therefore affect a downstream interferon pathway.
These findings show that the major allele of a nonsynonymous SNP, rs1131665 (412Q) in IRF7, confers elevated activation of IRF-7 and predisposes to the development of SLE in multiple ethnic groups. This result provides direct genetic evidence that IRF7 may be a risk gene for human SLE.

0 0
 · 
0 Bookmarks
 · 
100 Views
  • [show abstract] [hide abstract]
    ABSTRACT: The members of the type I interferon (IFN-I) family of cytokines are pleiotropic factors that have seminal roles in host defence, acting as antimicrobial and antitumor mediators as well as potent immunomodulatory factors that bridge the innate and adaptive immune responses. Despite these beneficial actions there is mounting evidence that link inappropriate or chronic production of IFN-I in the CNS to the development of a number of severe neuroinflammatory disorders. The most persuasive example is the genetically determined inflammatory encephalopathy, Aicardi-Goutières syndrome (AGS) in which patients have chronically elevated IFN-α production in the CNS. The presentation of AGS can often mimic congenital viral infection, however, molecular genetic studies have identified mutations in six genes that can cause AGS, most likely via dysregulated nucleic acid metabolism and activation of the innate immune response leading to increased intrathecal production of IFN-α. The role of IFN-α as a pathogenic factor in AGS and other neurological disorders has gained considerable support from experimental studies. In particular, a transgenic mouse model with CNS-restricted production of IFN-α replicates many of the cardinal neuropathologic features of AGS and reveal IFN-I to be the "devil from within", mediating molecular and cellular damage within the CNS. Thus, targeting IFN-I may be an effective strategy for the treatment of AGS as well as some other autoimmune and infectious neurological "interferonopathies".
    Cytokine & growth factor reviews 03/2013; · 6.49 Impact Factor
  • [show abstract] [hide abstract]
    ABSTRACT: Genetics unquestionably contributes to systemic lupus erythematosus (SLE) predisposition, progression and outcome. Nevertheless, single-gene defects causing lupus-like phenotypes have been infrequently documented. The majority of the identified genetic SLE risk factors are, therefore, common variants, responsible for a small effect on the global risk. Recently, genome wide association studies led to the identification of a growing number of gene variants associated with SLE susceptibility, particular disease phenotypes, and antibody profiles. Further studies addressed the biological effects of these variants. In addition, the role of epigenetics has recently been revealed. These combined efforts contributed to a better understanding of SLE pathogenesis and to the characterization of clinically relevant pathways. In this review, we describe SLE-associated single-gene defects, common variants, and epigenetic changes. We also discuss the limitations of current methods and the challenges that we still have to face in order to incorporate genomic and epigenomic data into clinical practice.
    Current Rheumatology Reports 09/2013; 15(9):369.
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: In contrast to pathogenic HIV/SIV infections of humans and rhesus macaques (RMs), natural SIV infection of sooty mangabeys (SMs) is typically non-pathogenic despite high viremia. Several studies suggested that low immune activation and relative resistance of CD4+ central memory T-cells from virus infection are mechanisms that protect SMs from AIDS. In 2008 it was reported that plasmacytoid dendritic cells (pDCs) of SMs exhibit attenuated interferon-alpha (IFN-α) responses to TLR7/9 ligands in vitro, and that species-specific amino acid substitutions in SM Interferon Regulatory Factor-7 (IRF7) are responsible for this observation. Based on these findings, these authors proposed that "muted" IFN-α responses are responsible for the benign nature of SIV infection in SMs. However, other studies indicated that acutely SIV-infected SMs show robust IFN-α responses and marked upregulation of Interferon Stimulated Genes (ISGs). To investigate this apparent disparity, we first examined the role of the reported IRF7 amino acid substitutions in SMs. To this end, we sequenced all IRF7 exons in 16 breeders, and exons displaying variability (exons 2,3,5,6,7,8) in the remainder of the colony (177 animals). We found that the reported Ser-Gly substitution at position 191 was a sequencing error, and that several of the remaining substitutions represent only minor alleles. In addition, functional assays using recombinant SM IRF7 showed no defect in its ability to translocate in the nucleus and drive transcription from an IFN-α promoter. Furthermore, in vitro stimulation of SM peripheral blood mononuclear cells with either the TLR7 agonist CL097 or SIVmac239 induced an 500-800-fold induction of IFN-α and IFN-β mRNA, and levels of IFN-α production by pDCs similar to those of RMs or humans. These data establish that IFN-α and IRF7 signaling in SMs are largely intact, with differences with RMs that are minor and unlikely to play any role in the AIDS resistance of SIV-infected SMs.
    PLoS Pathogens 08/2013; 9(8):e1003597. · 8.14 Impact Factor

Full-text

View
0 Downloads
Available from