Transcriptional Characterization of Wnt and Notch Signaling Pathways in Neuronal Differentiation of Human Adipose Tissue-Derived Stem Cells

Instituto de Ciencias Básicas y Medicina Experimental Hospital Italiano de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina.
Journal of Molecular Neuroscience (Impact Factor: 2.34). 03/2011; 44(3):186-94. DOI: 10.1007/s12031-011-9503-9
Source: PubMed


Since the nervous system has limited self-repair capability, a great interest in using stem cells is generated to repair it. The adipose tissue is an abundant source of stem cells and previous reports have shown the differentiation of them in neuron-like cells when cultures are enriched with growth factors involved in neurogenesis. Regarding this, it could be thought that a functional parallelism between neurogenesis and neuronal differentiation of human adipose stem cells (hASCs) exists. For this reason, we investigated the putative involvement of Notch and Wnt pathways in neuronal differentiation of hASCs through real-time PCR. We found that both Wnt and Notch signaling are present in proliferating hASCs and that both cascades are downregulated when cells are differentiated to a neuronal phenotype. These results are in concordance with previous works where it was found that both pathways are involved in the maintenance of the proliferative state of stem cells, probably through inhibition of the expression of cell-fate-specific genes. These results could support the notion that hASCs differentiation into neuron-like cells represents a regulated process analogous to what occurs during neuronal differentiation of NSCs and could partially contribute to elucidate the molecular mechanisms involved in neuronal differentiation of adult human nonneural tissues.

13 Reads
  • [Show abstract] [Hide abstract]
    ABSTRACT: Recent studies reporting differentiation of early neural progenitors of human adipose tissue-derived stromal cells (ADSCs) has aroused interest among investigators for regenerative medicine. The aim of this study was to investigate the differentiation of ADSCs to neuron-like cells and to extend the life span of these differentiated ADSCs in vitro using our new DE-1 medium. After primary culture and expansion, ADSCs were incubated in a new long-term neuronal induction medium that maintains ADSCs in a differentiated state for 8 weeks. Neuronal differentiation was identified using immunocytochemistry, reverse-transcriptase polymerase chain reaction, and Western blotting. We found that the optimal differentiation protocol induced the ADSCs to express early neuronal markers, including nestin and neuronal nuclear antigen (NeuN), as well as the mature astrocyte marker glial fibrillary acidic protein (GFAP). Neuronal morphological characteristics were recognized in approximately 40% to 50% of the cell populations maintained over 8 weeks, and 60% to 80% of the differentiated cells expressed neuronal specific markers, including nestin, GFAP, NeuN, Trk-A, vimentin, and neuron-specific enolase. The data show that our DE-1 medium is capable of achieving a greater number of differentiated ADSCs for a longer period of time. This result bodes well for the application of ADSCs in in vivo peripheral nerve regeneration.
    Tissue Engineering 12/2007; 13(11):2625-32. DOI:10.1089/ten.2007.0017 · 4.25 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: There are some evidences for suggesting that adipose derived stem cells (ADSCs) can be differentiated to the fate of neural cell type. ADSCs can be expanded rapidly in vitro and can be obtained by a less invasive method. In this study, we attempted to compare the stability of neural differentiation in human ADSCs by using two induction protocols. Isolated ADSCs were induced into neural-like cells using diverse effects of two specific procedures. For protocol 1, ADSCs were induced by chemical induction. In protocol 2, ADSCs were treated for sphere formation. Then, the singled cells were cultured in neurobasal media supplemented with special components. Differentiated ADSCs were evaluated for Nestin, MAP2 and GFAP expression by immunocytochemistry and semi quantitative RT-PCR techniques. Moreover, MTT assay was employed to detect cell viability and proliferation. Immunocytochemical analysis of both protocols demonstrated that ADSCs had large expression of the neural-specific markers. In RT-PCR, protocol 1 showed the highest percentage of MAP2 expression, but with time passing, the neural like state was reversible. Protocol 2 found with express of Nestin at week 1, however MAP2 and GFAP expression increased after 3 weeks. The neural-like cells produced by protocol 1 led to the further cell death. Comparative analysis showed that neural-like cell differentiation of ADSCs in chemical induction protocol was rapid but transitory, while it was approximately steady in neurosphere formation protocol.
    Tissue and Cell 12/2011; 44(2):87-94. DOI:10.1016/j.tice.2011.11.006 · 1.25 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Stem cells are unique cells exhibiting self-renewing properties and the potential to differentiate into multiple specialised cell types. Totipotent or pluripotent stem cells are generally abundant in embryonic or fetal tissues, but the use of discarded embryos as sources of these cells raises challenging ethical problems. Adult stem cells can also differentiate into a wide variety of cell types. In particular, adult adipose tissue contains a pool of abundant and accessible multipotent stem cells, designated as adipose-derived stem cells (ASCs), that are able to replicate as undifferentiated cells, to develop as mature adipocytes and to differentiate into multiple other cell types along the mesenchymal lineage, including chondrocytes, myocytes and osteocytes, and also into cells of endodermal and neuroectodermal origin, including beta-cells and neurons, respectively. An impairment in the differentiation potential and biological functions of ASCs may contribute to the development of obesity and related comorbidities. In this review, we summarise different aspects of the ASCs with special reference to the isolation and characterisation of these cell populations, their relation to the biochemical features of the adipose tissue depot of origin and to the metabolic characteristics of the donor subject and discuss some prospective therapeutic applications.
    Expert Reviews in Molecular Medicine 12/2012; 14:e19. DOI:10.1017/erm.2012.13 · 5.15 Impact Factor
Show more