Article

Strategies for quantifying C-60 fullerenes in environmental and biological samples and implications for studies in environmental health and ecotoxicology

Center for Environmental Biotechnology, The Biodesign Institute at Arizona State University, Tempe, AZ 85287, USA.
TrAC Trends in Analytical Chemistry (Impact Factor: 6.61). 01/2011; 30(1):44-57. DOI: 10.1016/j.trac.2010.08.005
Source: PubMed

ABSTRACT Fullerenes are sphere-like molecules with unique physico-chemical properties, which render them of particular interest in biomedical research, consumer products and industrial applications. Human and environmental exposure to fullerenes is not a new phenomenon, due to a long history of hydrocarbon-combustion sources, and will only increase in the future, as incorporation of fullerenes into consumer products becomes more widespread for use as anti-aging, anti-bacterial or anti-apoptotic agents.An essential step in the determination of biological effects of fullerenes (and their surface-functionalized derivatives) is establishment of exposure-assessment techniques. However, in ecotoxicological studies, quantification of fullerenes is performed infrequently because robust, uniformly applicable analytical approaches have yet to be identified, due to the wide variety of sample types. Moreover, the unique physico-chemistry of fullerenes in aqueous matrices requires reassessment of conventional analytical approaches, especially in more complex biological matrices (e.g., urine, blood, plasma, milk, and tissue).Here, we present a review of current analytical approaches for the quantification of fullerenes and propose a consensus approach for determination of these nanomaterials in a variety of environmental and biological matrices.

Full-text

Available from: Benny Pycke, Apr 19, 2015
1 Follower
 · 
150 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Increasing use of engineered nanomaterials (ENMs) inevitably leads to their potential release to the sewer system. The co-removal of nano fullerenes (nC60) and nanosilver as well as their impact on COD removal were studied in biological sequencing batch reactors (SBR) for a year. When dosing nC60 at 0.07-2mgL(-1), the SBR removed greater than 95% of nC60 except for short-term interruptions occurred (i.e., dysfunction of bioreactor by nanosilver addition) when nC60 and nanosilver were dosed simultaneously. During repeated 30-d periods of adding both 2mgL(-1) nC60 and 2mgL(-1) nanosilver, short-term interruption of SBRs for 4d was observed and accompanied by (1) reduced total suspended solids in the reactor, (2) poor COD removal rate as low as 22%, and (3) decreased nC60 removal to 0%. After the short-term interruption, COD removal gradually returned to normal within one solids retention time. Except for during these "short-term interruptions", the silver removal rate was above 90%. A series of bottle-point batch experiments was conducted to determine the distribution coefficients of nC60 between liquid and biomass phases. A linear distribution model on nC60 combined with a mass balance equation simulated well its removal rate at a range of 0.07-0.76mgL(-1) in SBRs. This paper illustrates the effect of "pulse" inputs (i.e., addition for a short period of time) of ENMs into biological reactors, demonstrates long-term capability of SBRs to remove ENMs and COD, and provides an example to predict the removal of ENMs in SBRs upon batch experiments. Copyright © 2014 Elsevier Ltd. All rights reserved.
    Chemosphere 12/2014; DOI:10.1016/j.chemosphere.2014.12.003 · 3.50 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: A meta-analysis was conducted to inform the epistemology, or theory of knowledge, of contaminants of emerging concern (CECs). The CEC terminology acknowledges the existence of harmful environmental agents whose identities, occurrences, hazards, and effects are not sufficiently understood. Here, data on publishing activity were analyzed for 12 CECs, revealing a common pattern of emergence, suitable for identifying past years of peak concern and forecasting future ones: dichlorodiphenyltrichloroethane (DDT; 1972, 2008), trichloroacetic acid (TCAA; 1972, 2009), nitrosodimethylamine (1984), methyl tert-butyl ether (2001), trichloroethylene (2005), perchlorate (2006), 1,4-dioxane (2009), prions (2009), triclocarban (2010), triclosan (2012), nanomaterials (by 2016), and microplastics (2022±4). CECs were found to emerge from obscurity to the height of concern in 14.1±3.6 years, and subside to a new baseline level of concern in 14.5±4.5 years. CECs can emerge more than once (e.g., TCAA, DDT) and the multifactorial process of emergence may be driven by inception of novel scientific methods (e.g., ion chromatography, mass spectrometry and nanometrology), scientific paradigm shifts (discovery of infectious proteins), and the development, marketing and mass consumption of novel products (antimicrobial personal care products, microplastics and nanomaterials). Publishing activity and U.S. regulatory actions were correlated for several CECs investigated.
    Journal of Hazardous Materials 09/2014; 282. DOI:10.1016/j.jhazmat.2014.08.074 · 4.33 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: In this work, a method is proposed for the simultaneous analysis of several pristine fullerenes (C60, C70, C76, C78, and C84) and three C60-fullerene derivatives (N-methyl fulleropyrrolidine, [6,6]-phenyl C61 butyric acid methyl ester and [6,6]-phenyl C61 butyric acid butyl ester) in environmental samples. The method involves the use of ultrahigh performance liquid chromatography coupled to atmospheric pressure photoionization mass spectrometry (UHPLC-APPI-MS) and allowed the chromatographic separation in less than 4.5min. The product ions from tandem mass spectrometry studies of fullerene derivatives were characterized and the most abundant one (m/z 720), corresponding to [C60](-), was selected for quantitation. Selected reaction monitoring (SRM at 0.7m/z FWHM) by acquiring two transitions using both isotopic cluster ions [M](-) and [M+1](-) as precursor ions was proposed for quantitation and confirmation purposes. For pristine fullerenes, highly selective selected ion monitoring (H-SIM) acquisition mode by monitoring the isotopic cluster ions [M](-) and [M+1](-) was used. Pressurized solvent extraction conditions were optimized in order to improve recoveries of the studied fullerene compounds from sediment samples. Values up to 87-92% for C60-fullerene derivatives and lower but still acceptable, 70-80%, for pristine fullerenes were obtained. Method limits of quantitation (MLOQs) ranging from 1.5pgL(-1) to 5.5ngL(-1) in water samples and from 0.1ngkg(-1) to 523ngkg(-1) in sediments were obtained with good precision (relative standard deviations always lower than 13%). The applicability of the developed method was evaluated by analyzing several environmental samples such as sediments and pond water and the detected levels for C60-fullerene derivatives were of 0.1-2.7ngkg(-1) and 1.5-8.5pgL(-1), respectively. C60 and C70 were the only pristine fullerenes detected in the analyzed samples (0.1-7.2ngkg(-1) in sediments and 9-330pgL(-1) in water pond samples).
    Journal of Chromatography A 09/2014; 1365. DOI:10.1016/j.chroma.2014.08.089 · 4.26 Impact Factor