Article

Nephrocystin-4 Regulates Pyk2-induced Tyrosine Phosphorylation of Nephrocystin-1 to Control Targeting to Monocilia

Renal Division, Department of Medicine and Center for Molecular Medicine, University of Cologne, 50937 Cologne, Germany.
Journal of Biological Chemistry (Impact Factor: 4.6). 02/2011; 286(16):14237-45. DOI: 10.1074/jbc.M110.165464
Source: PubMed

ABSTRACT Nephronophthisis is the most common genetic cause of end-stage renal failure during childhood and adolescence. Genetic studies have identified disease-causing mutations in at least 11 different genes (NPHP1-11), but the function of the corresponding nephrocystin proteins remains poorly understood. The two evolutionarily conserved proteins nephrocystin-1 (NPHP1) and nephrocystin-4 (NPHP4) interact and localize to cilia in kidney, retina, and brain characterizing nephronophthisis and associated pathologies as result of a ciliopathy. Here we show that NPHP4, but not truncating patient mutations, negatively regulates tyrosine phosphorylation of NPHP1. NPHP4 counteracts Pyk2-mediated phosphorylation of three defined tyrosine residues of NPHP1 thereby controlling binding of NPHP1 to the trans-Golgi sorting protein PACS-1. Knockdown of NPHP4 resulted in an accumulation of NPHP1 in trans-Golgi vesicles of ciliated retinal epithelial cells. These data strongly suggest that NPHP4 acts upstream of NPHP1 in a common pathway and support the concept of a role for nephrocystin proteins in intracellular vesicular transport.

0 Followers
 · 
152 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Polycystin-1 (PC1) mutations result in proliferative renal cyst growth and progression to renal failure in autosomal dominant polycystic kidney disease (ADPKD). The transcription factor STAT3 (signal transducer and activator of transcription 3) was shown to be activated in cyst-lining cells in ADPKD and PKD mouse models and may drive renal cyst growth, but the mechanisms leading to persistent STAT3 activation are unknown. A proteolytic fragment of PC1 corresponding to the cytoplasmic tail, PC1-p30, is overexpressed in ADPKD. Here, we show that PC1-p30 interacts with the nonreceptor tyrosine kinase Src, resulting in Src-dependent activation of STAT3 by tyrosine phosphorylation. The PC1-p30-mediated activation of Src/STAT3 was independent of JAK family kinases and insensitive to the STAT3 inhibitor suppressor of cytokine signaling 3. Signaling by the EGF receptor (EGFR) or cAMP amplified the activation of Src/STAT3 by PC1-p30. Expression of PC1-p30 changed the cellular response to cAMP signaling. In the absence of PC1-p30, cAMP dampened EGFR- or IL-6-dependent activation of STAT3; in the presence of PC1-p30, cAMP amplified Src-dependent activation of STAT3. In the polycystic kidney (PCK) rat model, activation of STAT3 in renal cystic cells depended on vasopressin receptor 2 (V2R) signaling, which increased cAMP levels. Genetic inhibition of vasopressin expression or treatment with a pharmacologic V2R inhibitor strongly suppressed STAT3 activation and reduced renal cyst growth. These results suggest that PC1, via its cleaved cytoplasmic tail, integrates signaling inputs from EGFR and cAMP, resulting in Src-dependent activation of STAT3 and a proliferative response.
    Journal of the American Society of Nephrology 02/2014; 25(8). DOI:10.1681/ASN.2013091026 · 9.47 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Mutations affecting the integrity and function of cilia have been identified in various genes over the last decade accounting for a group of diseases called ciliopathies. Ciliopathies display a broad spectrum of phenotypes ranging from mild manifestations to lethal combinations of multiple severe symptoms and most of them share cystic kidneys as a common feature. Our starting point was a consanguineous pedigree with three affected foetuses showing an early embryonic phenotype with enlarged cystic kidneys, liver and pancreas and developmental heart disease. By genome-wide linkage analysis we mapped the disease locus to chromosome 17q11 and identified a homozygous nonsense mutation in NEK8/NPHP9 which encodes a kinase involved in ciliary dynamics and cell cycle progression. Missense mutations in NEK8/NPHP9 have been identified in juvenile cystic kidney jck mice and in patients suffering from nephronophthisis (NPH), an autosomal-recessive cystic kidney disease. This work confirmed a complete loss of NEK8 expression in the affected foetuses due to nonsense-mediated decay. In cultured fibroblasts derived from these foetuses the expression of prominent polycystic kidney disease genes (PKD1 and PKD2) was decreased while the oncogene c-MYC was upregulated, providing potential explanations for the observed renal phenotype. We furthermore linked NEK8 with NPHP3, another NPH protein known to cause a very similar phenotype in case of null-mutations. Both proteins interact and activate the Hippo effector TAZ. Taken together, our study demonstrates that NEK8 is essential for organ development and that the complete loss of NEK8 perturbs multiple signalling pathways resulting in a severe early-embryonic phenotype.
    Human Molecular Genetics 02/2013; DOI:10.1093/hmg/ddt070 · 6.68 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Proline-rich tyrosine kinase 2 (Pyk2) is a member of the focal adhesion kinase (FAK) subfamily of cytoplasmic tyrosine kinases. The C-terminal Pyk2 focal adhesion-targeting (Pyk2-FAT) domain binds to paxillin, an adhesion molecule. Paxillin has five leucine-aspartate (LD) motifs (LD1-LD5). Here, we show that the second LD motif of paxillin, LD2, interacts with Pyk2-FAT, similar to the known Pyk2-FAT/LD4 interaction. Both LD motifs can target two ligand-binding sites on Pyk2-FAT. Interestingly, they also share similar binding affinity for Pyk2-FAT with preferential association to one site relative to the other. Nevertheless, the LD2-LD4 region of paxillin (paxillin(133-290)) binds to Pyk2-FAT as a 1:1 complex. However, our data suggests that the Pyk2-FAT and paxillin complex is dynamic and it appears to be a mixture of two distinct conformations of paxillin which almost equally compete for Pyk2-FAT binding. These studies provide insight into the underlying selectivity of paxillin for Pyk2 and FAK which may influence the differing behavior of these two closely-related kinases in focal adhesion sites.
    Journal of Molecular Biology 08/2014; 426(24). DOI:10.1016/j.jmb.2014.08.014 · 3.96 Impact Factor