Article

Nephrocystin-4 Regulates Pyk2-induced Tyrosine Phosphorylation of Nephrocystin-1 to Control Targeting to Monocilia

Renal Division, Department of Medicine and Center for Molecular Medicine, University of Cologne, 50937 Cologne, Germany.
Journal of Biological Chemistry (Impact Factor: 4.6). 02/2011; 286(16):14237-45. DOI: 10.1074/jbc.M110.165464
Source: PubMed

ABSTRACT Nephronophthisis is the most common genetic cause of end-stage renal failure during childhood and adolescence. Genetic studies have identified disease-causing mutations in at least 11 different genes (NPHP1-11), but the function of the corresponding nephrocystin proteins remains poorly understood. The two evolutionarily conserved proteins nephrocystin-1 (NPHP1) and nephrocystin-4 (NPHP4) interact and localize to cilia in kidney, retina, and brain characterizing nephronophthisis and associated pathologies as result of a ciliopathy. Here we show that NPHP4, but not truncating patient mutations, negatively regulates tyrosine phosphorylation of NPHP1. NPHP4 counteracts Pyk2-mediated phosphorylation of three defined tyrosine residues of NPHP1 thereby controlling binding of NPHP1 to the trans-Golgi sorting protein PACS-1. Knockdown of NPHP4 resulted in an accumulation of NPHP1 in trans-Golgi vesicles of ciliated retinal epithelial cells. These data strongly suggest that NPHP4 acts upstream of NPHP1 in a common pathway and support the concept of a role for nephrocystin proteins in intracellular vesicular transport.

0 Followers
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Polo-like kinase (Plk1) plays a central role in regulating the cell cycle. Plk1-mediated phosphorylation is essential for centrosome maturation, and for numerous mitotic events. Although Plk1 localizes to multiple subcellular sites, a major site of action is the centrosomes, which supports mitotic functions in control of bipolar spindle formation. In G0 or G1 untransformed cells, the centriolar core of the centrosome differentiates into the basal body of the primary cilium. Primary cilia are antenna-like sensory organelles dynamically regulated during the cell cycle. Whether Plk1 has a role in ciliary biology has never been studied. Nephrocystin-1 (NPHP1) is a ciliary protein; loss of NPHP1 in humans causes nephronophthisis (NPH), an autosomal-recessive cystic kidney disease. We here demonstrate that Plk1 colocalizes with nephrocystin-1 to the transition zone of primary cilia in epithelial cells. Plk1 co-immunoprecipitates with NPHP1, suggesting it is part of the nephrocystin protein complex. We identified a candidate Plk1 phosphorylation motif (D/E-X-S/T-φ-X-D/E) in nephrocystin-1, and demonstrated in vitro that Plk1 phosphorylates the nephrocystin N-terminus, which includes the specific PLK1 phosphorylation motif. Further, induced disassembly of primary cilia rapidly evoked Plk1 kinase activity, while small molecule inhibition of Plk1 activity or RNAi-mediated downregulation of Plk1 limited the first and second phase of ciliary disassembly. These data identify Plk1 as a novel transition zone signaling protein, suggest a function of Plk1 in cilia dynamics, and link Plk1 to the pathogenesis of NPH and potentially other cystic kidney diseases.
    PLoS ONE 06/2012; 7(6):e38838. DOI:10.1371/journal.pone.0038838 · 3.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Polycystin-1 (PC1) mutations result in proliferative renal cyst growth and progression to renal failure in autosomal dominant polycystic kidney disease (ADPKD). The transcription factor STAT3 (signal transducer and activator of transcription 3) was shown to be activated in cyst-lining cells in ADPKD and PKD mouse models and may drive renal cyst growth, but the mechanisms leading to persistent STAT3 activation are unknown. A proteolytic fragment of PC1 corresponding to the cytoplasmic tail, PC1-p30, is overexpressed in ADPKD. Here, we show that PC1-p30 interacts with the nonreceptor tyrosine kinase Src, resulting in Src-dependent activation of STAT3 by tyrosine phosphorylation. The PC1-p30-mediated activation of Src/STAT3 was independent of JAK family kinases and insensitive to the STAT3 inhibitor suppressor of cytokine signaling 3. Signaling by the EGF receptor (EGFR) or cAMP amplified the activation of Src/STAT3 by PC1-p30. Expression of PC1-p30 changed the cellular response to cAMP signaling. In the absence of PC1-p30, cAMP dampened EGFR- or IL-6-dependent activation of STAT3; in the presence of PC1-p30, cAMP amplified Src-dependent activation of STAT3. In the polycystic kidney (PCK) rat model, activation of STAT3 in renal cystic cells depended on vasopressin receptor 2 (V2R) signaling, which increased cAMP levels. Genetic inhibition of vasopressin expression or treatment with a pharmacologic V2R inhibitor strongly suppressed STAT3 activation and reduced renal cyst growth. These results suggest that PC1, via its cleaved cytoplasmic tail, integrates signaling inputs from EGFR and cAMP, resulting in Src-dependent activation of STAT3 and a proliferative response.
    Journal of the American Society of Nephrology 02/2014; 25(8). DOI:10.1681/ASN.2013091026 · 9.47 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Loss of cilia and ciliary protein causes various abnormalities (called ciliopathy), including situs inversus, renal cystic diseases, polydactyly and dysgenesis of the nervous system. Renal cystic diseases are the most frequently observed symptoms in ciliopathies. Cilia are microtubule-based organelles with the following regions: a ciliary tip, shaft, transitional zone and basal body/mother centriole. Joubert syndrome (JBTS), Meckel Gruber syndrome (MKS) and Nephronophthisis (NPHP) are overlapping syndromes. Recent studies show that JBST and MKS responsible gene products are localized in the transitional zone of the cilia, where they function as a diffusion barrier, and control protein sorting and ciliary membrane composition. Nephrocystins are gene products of NPHP responsible genes, and at least 11 genes have been identified. Although some nephrocystins interact with JBST and MKS proteins, proteomic analysis suggests that they do not form a single complex. Localization analysis reveals that nephrocystins can be divided into two groups. Group I nephrocystins are localized in the transitional zone, whereas group II nephrocystins are localized in the Inv compartment. Homologs of group I nephrocystins, but not group II nephrocystins, have been reported in C. reinhardtii and C. elegans. In this review, we summarize the structure of the ciliary base of C. reinhardtii, C. elegans and mammalian primary cilia, and discuss function of nephrocystins. We also propose a new classification of nephrocystins.
    Differentiation 12/2011; 83(2):S91-6. DOI:10.1016/j.diff.2011.11.006 · 2.84 Impact Factor