Article

Copy number gain at Xp22.31 includes complex duplication rearrangements and recurrent triplications.

Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Room 604B, Houston, TX 77030, USA.
Human Molecular Genetics (Impact Factor: 6.68). 02/2011; 20(10):1975-88. DOI: 10.1093/hmg/ddr078
Source: PubMed

ABSTRACT Genomic instability is a feature of the human Xp22.31 region wherein deletions are associated with X-linked ichthyosis, mental retardation and attention deficit hyperactivity disorder. A putative homologous recombination hotspot motif is enriched in low copy repeats that mediate recurrent deletion at this locus. To date, few efforts have focused on copy number gain at Xp22.31. However, clinical testing revealed a high incidence of duplication of Xp22.31 in subjects ascertained and referred with neurobehavioral phenotypes. We systematically studied 61 unrelated subjects with rearrangements revealing gain in copy number, using multiple molecular assays. We detected not only the anticipated recurrent and simple nonrecurrent duplications, but also unexpectedly identified recurrent triplications and other complex rearrangements. Breakpoint analyses enabled us to surmise the mechanisms for many of these rearrangements. The clinical significance of the recurrent duplications and triplications were assessed using different approaches. We cannot find any evidence to support pathogenicity of the Xp22.31 duplication. However, our data suggest that the Xp22.31 duplication may serve as a risk factor for abnormal phenotypes. Our findings highlight the need for more robust Xp22.31 triplication detection in that such further gain may be more penetrant than the duplications. Our findings reveal the distribution of different mechanisms for genomic duplication rearrangements at a given locus, and provide insights into aspects of strand exchange events between paralogous sequences in the human genome.

0 Bookmarks
 · 
200 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In females, X chromosome inactivation (XCI) is an epigenetic, gene dosage compensatory mechanism by inactivation of one copy of X in cells. Random XCI of one of the parental chromosomes results in an approximately equal proportion of cells expressing alleles from either the maternally or paternally inherited active X, and is defined by the XCI ratio. Skewed XCI ratio is suggestive of non-random inactivation, which can play an important role in X-linked genetic conditions. Current methods rely on indirect, semi-quantitative DNA methylation-based assay to estimate XCI ratio. Here we report a direct approach to estimate XCI ratio by integrated, family-trio based whole-exome and mRNA sequencing using phase-by-transmission of alleles coupled with allele-specific expression analysis. We applied this method to in silico data and to a clinical patient with mild cognitive impairment but no clear diagnosis or understanding molecular mechanism underlying the phenotype. Simulation showed that phased and unphased heterozygous allele expression can be used to estimate XCI ratio. Segregation analysis of the patient's exome uncovered a de novo, interstitial, 1.7 Mb deletion on Xp22.31 that originated on the paternally inherited X and previously been associated with heterogeneous, neurological phenotype. Phased, allelic expression data suggested an 83∶20 moderately skewed XCI that favored the expression of the maternally inherited, cytogenetically normal X and suggested that the deleterious affect of the de novo event on the paternal copy may be offset by skewed XCI that favors expression of the wild-type X. This study shows the utility of integrated sequencing approach in XCI ratio estimation.
    PLoS ONE 01/2014; 9(12):e113036. · 3.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Background The rearrangements in the 22q11.2 chromosomal region, responsible for the 22q11.2 deletion and microduplication syndromes, are frequently associated with congenital heart disease (CHD). The present work aimed to identify the genetic basis of CHD in 87 patients from the São Miguel Island, Azores, through the detection of copy number variants (CNVs) in the 22q11.2 region. These structural variants were searched using multiplex ligation-dependent probe amplification (MLPA). In patients with CNVs, we additionally performed fluorescent in situ hybridization (FISH) for the assessment of the exact number of 22q11.2 copies among each chromosome, and array comparative genomic hybridization (array-CGH) for the determination of the exact length of CNVs.ResultsWe found that four patients (4.6%; A to D) carried CNVs. Patients A and D, both affected with a ventricular septal defect, carried a de novo 2.5 Mb deletion of the 22q11.2 region, which was probably originated by inter-chromosomal (inter-chromatid) non-allelic homologous recombination (NAHR) events in the regions containing low-copy repeats (LCRs). Patient C, with an atrial septal defect, carried a de novo 2.5 Mb duplication of 22q11.2 region, which could have been probably generated during gametogenesis by NAHR or by unequal crossing-over; additionally, this patient presented a benign 288 Kb duplication, which included the TOP3B gene inherited from her healthy mother. Finally, patient B showed a 3 Mb triplication associated with dysmorphic facial features, cognitive deficit and heart defects, a clinical feature not reported in the only case described so far in the literature. The evaluation of patient B¿s parents revealed a 2.5 Mb duplication in her father, suggesting a paternal inheritance with an extra copy.Conclusions This report allowed the identification of rare deletion and microduplication syndromes in Azorean CHD patients. Moreover, we report the second patient with a 22q11.2 triplication, and we suggest that patients with triplications of chromosome 22q11.2, although they share some characteristic features with the deletion and microduplication syndromes, present a more severe phenotype probably due to the major dosage of implicated genes.
    BMC Genetics 11/2014; 15(1):115. · 2.36 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Mutation is associated with developmental and hereditary disorders, aging and cancer. While we understand some mutational processes operative in human disease, most remain mysterious. We used C. elegans whole genome sequencing to model mutational signatures, analyzing 183 worm populations across 17 DNA repair-deficient backgrounds, propagated for 20 generations or exposed to carcinogens. The baseline mutation rate in C. elegans was ~1/genome/generation, not overtly altered across several DNA repair deficiencies over 20 generations. Telomere erosion led to complex chromosomal rearrangements initiated by breakage-fusion-bridge cycles and completed by simultaneously acquired, localized clusters of breakpoints. Aflatoxin-B1 induced substitutions of guanines in GpC context, as observed in aflatoxin-induced liver cancers. Mutational burden increased with impaired nucleotide excision repair. Cisplatin and mechlorethamine, DNA crosslinking agents, caused dose- and genotype-dependent signatures among indels, substitutions and rearrangements. Strikingly, both agents induced clustered rearrangements resembling 'chromoanasynthesis,' a replication-based mutational signature seen in constitutional genomic disorders, suggesting interstrand crosslinks may play a pathogenic role in such events. Cisplatin mutagenicity was most pronounced in xpf-1 mutants, suggesting this gene critically protects cells against platinum chemotherapy. Thus, experimental model systems combined with genome sequencing can recapture and mechanistically explain mutational signatures associated with human disease.
    Genome Research 07/2014; · 13.85 Impact Factor

Full-text (2 Sources)

Download
61 Downloads
Available from
May 15, 2014