Copy number gain at Xp22.31 includes complex duplication rearrangements and recurrent triplications.

Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Room 604B, Houston, TX 77030, USA.
Human Molecular Genetics (Impact Factor: 6.68). 02/2011; 20(10):1975-88. DOI: 10.1093/hmg/ddr078
Source: PubMed

ABSTRACT Genomic instability is a feature of the human Xp22.31 region wherein deletions are associated with X-linked ichthyosis, mental retardation and attention deficit hyperactivity disorder. A putative homologous recombination hotspot motif is enriched in low copy repeats that mediate recurrent deletion at this locus. To date, few efforts have focused on copy number gain at Xp22.31. However, clinical testing revealed a high incidence of duplication of Xp22.31 in subjects ascertained and referred with neurobehavioral phenotypes. We systematically studied 61 unrelated subjects with rearrangements revealing gain in copy number, using multiple molecular assays. We detected not only the anticipated recurrent and simple nonrecurrent duplications, but also unexpectedly identified recurrent triplications and other complex rearrangements. Breakpoint analyses enabled us to surmise the mechanisms for many of these rearrangements. The clinical significance of the recurrent duplications and triplications were assessed using different approaches. We cannot find any evidence to support pathogenicity of the Xp22.31 duplication. However, our data suggest that the Xp22.31 duplication may serve as a risk factor for abnormal phenotypes. Our findings highlight the need for more robust Xp22.31 triplication detection in that such further gain may be more penetrant than the duplications. Our findings reveal the distribution of different mechanisms for genomic duplication rearrangements at a given locus, and provide insights into aspects of strand exchange events between paralogous sequences in the human genome.


Available from: John Belmont, Jun 12, 2015
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The 15q11q13 region is subject to imprinting and is involved in various structural rearrangements. Less than 1% of Angelman Syndrome patients are due to translocations involving 15q11q13. These translocations can arise de novo or result from the segregation of chromosomes involved in a familial balanced translocation. A 5-year-old Mexican girl presented with developmental delay, minor dysmorphic features and history of exotropia. G-banding chromosome analysis established the diagnosis of Angelman Syndrome resulting from a familial translocation t(10;15) involving the 15q11.2 region. The available family members were studied using banding and molecular cytogenetic techniques, including Microarray-based Comparative Genomic Hybridization, which revealed additional unexpected results: a coincidental and smaller 15q deletion, asymptomatic duplications in 15q11.2 and Xp22.31 regions. This report demonstrates the usefulness of array CGH for a detailed characterization of familial translocations, including the detection of submicroscopic copy number variations, which would otherwise be missed by karyotype analysis alone. Our report also expands two molecularly characterized rare patient cohorts: Angelman Syndrome patients due to familial translocations and patients with 15q11.2 duplications of paternal origin.
    Molecular Cytogenetics 12/2015; 8(1). DOI:10.1186/s13039-015-0127-6 · 2.66 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We investigated complex genomic rearrangements (CGRs) consisting of triplication copy-number variants (CNVs) that were accompanied by extended regions of copy-number-neutral absence of heterozygosity (AOH) in subjects with multiple congenital abnormalities. Molecular analyses provided observational evidence that in humans, post-zygotically generated CGRs can lead to regional uniparental disomy (UPD) due to template switches between homologs versus sister chromatids by using microhomology to prime DNA replication-a prediction of the replicative repair model, MMBIR. Our findings suggest that replication-based mechanisms might underlie the formation of diverse types of genomic alterations (CGRs and AOH) implicated in constitutional disorders. Copyright © 2015 The American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.
    The American Journal of Human Genetics 03/2015; 96(4). DOI:10.1016/j.ajhg.2015.01.021 · 10.99 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Deletions in the 2p16.3 region that includes the neurexin (NRXN1) gene are associated with intellectual disability and various psychiatric disorders, in par-ticular, autism and schizophrenia. We present three unrelated patients, two adults and one child, in whom we identified an intragenic 2p16.3 deletion within the NRXN1 gene using an oligonucleotide comparative genomic hybrid-ization array. The three patients presented dual diagnosis that consisted of mild intellectual disability and autism and bipolar disorder. Also, they all shared a dysmorphic phenotype characterized by a long face, deep set eyes, and promi-nent premaxilla. Genetic analysis of family members showed two inherited dele-tions. A comprehensive neuropsychological examination of the 2p16.3 deletion carriers revealed the same phenotype, characterized by anxiety disorder, border-line intelligence, and dysexecutive syndrome. The cognitive pattern of dysexecu-tive syndrome with poor working memory and reduced attention switching, mental flexibility, and verbal fluency was the same than those of the adult pro-bands. We suggest that in addition to intellectual disability and psychiatric dis-ease, NRXN1 deletion is a risk factor for a characteristic cognitive and dysmorphic profile. The new cognitive phenotype found in the 2p16.3 deletion carriers suggests that 2p16.3 deletions might have a wide variable expressivity instead of incomplete penetrance.
    08/2014; 2(6). DOI:10.1002/mgg3.105