Article

Regulation of cell differentiation by the DNA damage response.

Molecular Biology Institute, University of California, Los Angeles, CA 90095, USA.
Trends in cell biology (Impact Factor: 12.12). 02/2011; 21(5):312-9. DOI: 10.1016/j.tcb.2011.01.004
Source: PubMed

ABSTRACT When faced with DNA double-strand breaks (DSBs), vertebrate cells activate DNA damage response (DDR) programs that preserve genome integrity and suppress malignant transformation. Three established outcomes of the DDR include transient cell cycle arrest coupled with DNA repair, apoptosis, or senescence. However, recent studies in normal and cancer precursor or stem cells suggest that a fourth potential outcome, cell differentiation, is under the influence of DDR programs. Here we review and discuss the emerging evidence that supports the linkage of signaling from DSBs to the regulation of differentiation, including some of the molecular mechanisms driving this under-appreciated DDR outcome. We also consider the physiologic and pathologic consequences of defects in DDR signaling on cell differentiation and malignant transformation.

0 Bookmarks
 · 
103 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Molecular and genetic evidence suggests that DNA repair pathways may contribute to lymphoma susceptibility. Several studies have examined the association of DNA repair genes with lymphoma risk, but the findings from these reports have been inconsistent. Here we provide the results of a focused analysis of genetic variation in DNA repair genes and their association with the risk of non-Hodgkin's lymphoma (NHL). With a population of 1,297 NHL cases and 1,946 controls, we have performed a two-stage case/control association analysis of 446 single nucleotide polymorphisms (SNPs) tagging the genetic variation in 81 DNA repair genes. We found the most significant association with NHL risk in the ATM locus for rs227060 (OR = 1.27, 95% CI: 1.13-1.43, p = 6.77×10-5), which remained significant after adjustment for multiple testing. In a subtype-specific analysis, associations were also observed for the ATM locus among both diffuse large B-cell lymphomas (DLBCL) and small lymphocytic lymphomas (SLL), however there was no association observed among follicular lymphomas (FL). In addition, our study provides suggestive evidence of an interaction between SNPs in MRE11A and NBS1 associated with NHL risk (OR = 0.51, 95% CI: 0.34-0.77, p = 0.0002). Finally, an imputation analysis using the 1,000 Genomes Project data combined with a functional prediction analysis revealed the presence of biologically relevant variants that correlate with the observed association signals. While the findings generated here warrant independent validation, the results of our large study suggest that ATM may be a novel locus associated with the risk of multiple subtypes of NHL.
    PLoS ONE 07/2014; 9(7):e101685. · 3.53 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Apoptosis and the DNA damage response have been implicated in hematopoietic development and differentiation, as well as in the pathogenesis of myelodysplastic syndromes (MDS) and leukemia. However, the importance of late-stage mediators of apoptosis in hematopoiesis and leukemogenesis has not been elucidated. Here, we examine the role of Caspase-9, the initiator caspase of the intrinsic apoptotic cascade, in murine fetal and adult hematopoiesis. Casp9 deficiency resulted in decreased erythroid and B-cell progenitor abundance and impaired function of hematopoietic stem cells after transplantation. Mouse bone marrow chimeras lacking Casp9 or its cofactor Apaf1 developed low white blood cell counts, decreased B cell numbers, anemia, and reduced survival. Defects in apoptosis have also been previously implicated in susceptibility to therapy-related leukemia, a disease caused by exposure to DNA-damaging chemotherapy. We found that the burden of DNA damage was increased in Casp9 deficient cells after exposure to the alkylator, N-ethyl-nitrosourea (ENU). Furthermore, exome sequencing revealed that oligoclonal hematopoiesis emerged in Casp9 deficient bone marrow chimeras after alkylator exposure. Taken together, these findings suggest that defects in apoptosis could be a key step in the pathogenesis of alkylator-associated secondary malignancies.
    Blood 10/2014; · 9.78 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: BRCA1-a breast and ovarian cancer suppressor gene-promotes genome integrity. To study the functionality of BRCA1 in the heterozygous state, we established a collection of primary human BRCA1(+/+) and BRCA1(mut/+) mammary epithelial cells and fibroblasts. Here we report that all BRCA1(mut/+) cells exhibited multiple normal BRCA1 functions, including the support of homologous recombination- type double-strand break repair (HR-DSBR), checkpoint functions, centrosome number control, spindle pole formation, Slug expression and satellite RNA suppression. In contrast, the same cells were defective in stalled replication fork repair and/or suppression of fork collapse, that is, replication stress. These defects were rescued by reconstituting BRCA1(mut/+) cells with wt BRCA1. In addition, we observed 'conditional' haploinsufficiency for HR-DSBR in BRCA1(mut/+) cells in the face of replication stress. Given the importance of replication stress in epithelial cancer development and of an HR defect in breast cancer pathogenesis, both defects are candidate contributors to tumorigenesis in BRCA1-deficient mammary tissue.
    Nature Communications 11/2014; 5:5496. · 10.74 Impact Factor

Preview

Download
0 Downloads
Available from