Quantitative Assessment of Myeloid Nuclear Differentiation Antigen Distinguishes Myelodysplastic Syndrome From Normal Bone Marrow

Departments of Pathology, Vanderbilt University Medical Center, Nashville, TN, USA.
American Journal of Clinical Pathology (Impact Factor: 3.01). 03/2011; 135(3):380-5. DOI: 10.1309/AJCP00SHTQCVUYRI
Source: PubMed

ABSTRACT By using flow cytometry, we analyzed myeloid nuclear differentiation antigen (MNDA) expression in myeloid precursors in bone marrow from patients with myelodysplastic syndrome (MDS) and control samples from patients undergoing orthopedic procedures. The median percentage of MNDA-dim myeloid precursors in MDS cases was 67.4% (range, 0.7%-97.5%; interquartile range, 44.9%-82.7%) of myeloid cells, with bimodal MNDA expression in most MDS samples. Control samples demonstrated a median MNDA-dim percentage in myeloid precursors of 1.2% (range, 0.2%-13.7%; interquartile range, 0.6%-2.7%), with no bimodal pattern in most samples. The area under the receiver operating characteristic curve for MNDA-dim percentage in myeloid precursors was 0.96 (P = 9 × 10(-7)). Correlation of MNDA-dim levels with World Health Organization 2008 morphologic diagnoses was not significant (P = .21), but correlation with patient International Prognostic Scoring System scores suggested a trend (P = .07). Flow cytometric assessment of MNDA in myeloid precursors in bone marrow may be useful for the diagnosis of MDS.


Available from: Claudio A Mosse, Jun 05, 2015
  • [Show abstract] [Hide abstract]
    ABSTRACT: Abstract Myelodysplastic syndromes (MDS) are a heterogeneous group of myeloid neoplasms. With the emergence of therapeutic options, attempts to standardise diagnostic, prognostic and response criteria to guide treatment decisions are increasingly important. This has been achieved in part by the revised 2008 WHO classification and consensus guidelines outlining refined definitions and standards. Conventional criteria have limitations in terms of sensitivity and specificity. Multiparameter flow cytometry (FC) can be used real-time and is a highly reproducible and objective way of assessing the pattern of expression of multiple antigens on a single hematopoietic cell and defined subpopulations. By comparing antigen expression within maturing myelomonocytic populations, with that identified on the equivalent normal cells, abnormalities identified may provide a diagnostic indication of stem cell dysmaturation. There is now increasingly robust data demonstrating the capacity of FC to discriminate MDS from non-clonal cytopenias and dysplasia, as well as further refine disease classification and prognostication, which will be reviewed here.
    Leukemia & lymphoma 07/2013; 55(4). DOI:10.3109/10428194.2013.820291 · 2.61 Impact Factor
  • Source
    Cytometry Part B Clinical Cytometry 09/2012; 82(5):268-70. DOI:10.1002/cyto.b.21036 · 2.28 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Myeloid nuclear differentiation antigen (MNDA) is expressed in myelomonocytic cells with highest levels in mature granulocytes and monocytes. It is suggested to be expressed more weakly in patients with myelodysplastic syndromes (MDS). The analysis of MNDA therefore may improve diagnostic capabilities of multiparameter flow cytometry (MFC) in MDS. We used MFC for detection of MNDA expression in 269 patients with suspected or known MDS, acute myeloid leukemia (AML) or chronic myelomonocytic leukemia (CMML), cytopenia of unknown cause or without malignancy (negative controls). Results were compared with the diagnoses revealed by cytomorphology (CM) and cytogenetics (CG). Percentages of granulocytes and monocytes with diminished MNDA expression (dimG and dimM) were higher in patients with MDS (mean ± SD, 20% ± 20%, P < 0.001 and 31% ± 24%, P < 0.001) and AML (27% ± 27%, P = 0.007 and 45% ± 31%, P = 0.001) diagnosed by CM, vs. patients without MDS (8% ± 10% and 16% ± 11%), respectively. Significant differences were also found for mean fluorescence intensity (MFI) of MNDA in monocytes which was lower in MDS (mean ± SD, 71 ± 36, P = 0.004) and AML (55 ± 39, P < 0.001) vs. no MDS samples (85 ± 28), respectively. Within patients with MDS, cases with cytogenetic aberrations showed a trend to higher %dimG (24% ± 18%, P = 0.083) compared with those without (16% ± 21%). Cut-off values for %dimG (12%) and %dimM (22%) as well as for MFI in monocytes (72) were defined capable of discriminating between MDS and non-MDS. MNDA expression in bone marrow cells can be assessed reliably by MFC and may facilitate evaluation of dyspoiesis when added to a standard MDS MFC panel. © 2012 International Clinical Cytometry Society.
    Cytometry Part B Clinical Cytometry 09/2012; 82(5):295-304. DOI:10.1002/cyto.b.21026 · 2.28 Impact Factor