Urinary phthalate metabolites in relation to biomarkers of inflammation and oxidative stress: NHANES 1999-2006.

Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, MI, USA.
Environmental Research (Impact Factor: 3.95). 02/2011; 111(5):718-26. DOI: 10.1016/j.envres.2011.02.002
Source: PubMed

ABSTRACT Phthalate esters are a class of compounds utilized extensively in widely-distributed consumer goods, and have been associated with various adverse health outcomes in previous epidemiologic research. Some of these health outcomes may be the result of phthalate-induced increases in oxidative stress or inflammation, which have been demonstrated in animal studies. The aim of this study was to explore the relationship between urinary phthalate metabolite concentrations and serum markers of inflammation and oxidative stress (C-reactive protein (CRP) and gamma glutamyltransferase (GGT), respectively). Subjects were participants in the National Health and Nutrition Examination Survey (NHANES) between the years 1999 and 2006. In multivariable linear regression models, we observed significant positive associations between CRP and mono-benzyl phthalate (MBzP) and mono-isobutyl phthalate (MiBP). There were CRP elevations of 6.0% (95% confidence interval (CI) 1.7-10.8%) and 8.3% (95% CI 2.9-14.0%) in relation to interquartile range (IQR) increases in urinary MBzP and MiBP, respectively. GGT was positively associated with mono(2-ethylhexyl) phthalate (MEHP) and an MEHP% variable calculated from the proportion of MEHP in comparison to other di(2-ethylhexyl) phthalate (DEHP) metabolites. IQR increases in MEHP and MEHP% were associated with 2.5% (95% CI 0.2-4.8%) and 3.7% (95% CI 1.7-5.7%) increases in GGT, respectively. CRP and GGT were also inversely related to several phthalate metabolites, primarily oxidized metabolites. In conclusion, several phthalate monoester metabolites that are detected in a high proportion of urine samples from the US general population are associated with increased serum markers of inflammation and oxidative stress. On the other hand, several oxidized phthalate metabolites were inversely associated with these markers. These relationships deserve further exploration in both experimental and observational studies.

Download full-text


Available from: Rita Loch-Caruso, Dec 12, 2013
  • [Show abstract] [Hide abstract]
    ABSTRACT: The use of recently available high-voltage insulated gate bipolar transistor (IGBT) to improve switching performance of a gate turn-off (GTO) thyristor in a cascode configuration is documented. The IGBT-gated GTO-cascode switch features simple drive requirement, fast switching, robustness, and overcurrent protection. The cascode switch is applied in a quasi-resonant converter. Results indicate that IGBT-gated GTO-cascode switches are promising candidates for high-power and high-frequency applications
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In May 2011, the illegal use of the phthalate plasticizer di(2-ethylhexyl) phthalate in clouding agents for use in foods and beverages was reported in Taiwan. This food scandal has caused shock and panic among the majority of Taiwanese people and has attracted international attention. Phthalate exposure is assessed by ambient monitoring or human biomonitoring. Ambient monitoring relies on measuring chemicals in environmental media, foodstuff and consumer products. Human biomonitoring determines body burden by measuring the chemicals, their metabolites or specific reaction products in human specimens. In mammalian development, the fetus is set to develop into a female. Because the female phenotype is the default, impairment of testosterone production or action before the late phase may lead to feminizing characteristics. Phthalates disrupt the development of androgen-dependent structures by inhibiting fetal testicular testosterone biosynthesis. The spectrum of effects obtained following perinatal exposure of male rats to phthalates has remarkable similarities with the human testicular dysgenesis syndrome. Epidemiological studies have suggested associations between phthalate exposure and shorter gestational age, shorter anogenital distance, shorter penis, incomplete testicular descent, sex hormone alteration, precocious puberty, pubertal gynecomastia, premature thelarche, rhinitis, eczema, asthma, low birth weight, attention deficit hyperactivity disorder, low intelligence quotient, thyroid hormone alteration, and hypospadias in infants and children. Furthermore, many studies have suggested associations between phthalate exposure and increased sperm DNA damage, decreased proportion of sperm with normal morphology, decreased sperm concentration, decreased sperm morphology, sex hormone alteration, decreased pulmonary function, endometriosis, uterine leiomyomas, breast cancer, obesity, hyperprolactinemia, and thyroid hormone alteration in adults. Finally, the number of phthalate-related scientific publications from Taiwan has increased greatly over the past 5 years, which may reflect the health effects from the illegal addition of phthalate plasticizer to clouding agent in foodstuff over the past two decades.
    Journal of the Formosan Medical Association 11/2011; 110(11):671-84. DOI:10.1016/j.jfma.2011.09.002 · 1.70 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Phthalate exposure has been associated with a wide range of adverse health outcomes in limited epidemiologic studies, and inflammation and oxidative stress have been hypothesized as potential mechanisms involved. In the present study we investigated associations between urinary concentrations of phthalate metabolites and potential blood markers of oxidative stress (bilirubin) and inflammation (alkaline phosphatase [ALP], absolute neutrophil count [ANC], ferritin [adjusted for iron status], and fibrinogen), using data from 10,026 participants in the National Health and Nutrition Examination Survey (NHANES) recruited between 1999 and 2006. After adjustment for covariates we found that bilirubin was inversely associated with several phthalate metabolites (all p-values <0.0001), including the metabolites of di-2-ethylhexyl phthalate (DEHP) and dibutyl phthalate (DBP), in addition to monobenzyl phthalate (MBzP) and mono-(3-carboxypropyl) phthalate (MCPP). Since bilirubin is a potent antioxidant these relationships suggest that phthalates may be associated with increased oxidative stress. Many of the same metabolites were also significantly and positively related with ANC, ALP, and ferritin, suggesting phthalates may be associated with increased inflammation. These markers may be useful in other studies of low-dose exposure to environmental contaminants.
    Environmental Science & Technology 11/2011; 46(1):477-85. DOI:10.1021/es202340b · 5.48 Impact Factor