Article

Brain volume changes after withdrawal of atypical antipsychotics in patients with first-episode schizophrenia.

Department of Psychiatry, Rudolf Magnus Institute of Neuroscience, University Medical Center Utrecht, The Netherlands.
Journal of clinical psychopharmacology (Impact Factor: 5.09). 02/2011; 31(2):146-53. DOI: 10.1097/JCP.0b013e31820e3f58
Source: PubMed

ABSTRACT The influence of antipsychotic medication on brain morphology in schizophrenia may confound interpretation of brain changes over time. We aimed to assess the effect of discontinuation of atypical antipsychotic medication on change in brain volume in patients. Sixteen remitted, stable patients with first-episode schizophrenia, schizoaffective or schizophreniform disorder and 20 healthy controls were included. Two magnetic resonance imaging brain scans were obtained from all subjects with a 1-year interval. The patients either discontinued (n = 8) their atypical antipsychotic medication (olanzapine, risperidone, or quetiapine) or did not (n = 8) discontinue during the follow-up period. Intracranial volume and volumes of total brain, cerebral gray and white matter, cerebellum, third and lateral ventricle, nucleus caudatus, nucleus accumbens, and putamen were obtained. Multiple linear regression analyses were used to assess main effects for group (patient-control) and discontinuation (yes-no) for brain volume (change) while correcting for age, sex, and intracranial volume. Decrease in cerebral gray matter and caudate nucleus volume over time was significantly more pronounced in patients relative to controls. Our data suggest decreases in the nucleus accumbens and putamen volumes during the interval in patients who discontinued antipsychotic medication, whereas increases were found in patients who continued their antipsychotics. We confirmed earlier findings of excessive gray matter volume decrements in patients with schizophrenia compared with normal controls. We found evidence suggestive of decreasing volumes of the putamen and nucleus accumbens over time after discontinuation of medication. This might suggest that discontinuation reverses effects of atypical medication.

0 Bookmarks
 · 
120 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Multiple sclerosis is the leading nontraumatic cause of neurologic disability in young adults. The need to prevent neurodegeneration and promote repair in multiple sclerosis (MS) has gained increasing interest in the last decade leading to the search and development of pharmacological agents and non-pharmacologic strategies able to target not only the inflammatory but also the neurodegenerative component of the disease. This paper will provide an overview of the therapeutics currently employed in MS, with a focus on their potential neuroprotective effects and on the MRI methods employed to detect and monitor in-vivo neuroprotection and repair and the relevance of this information to schizophrenia investigation and treatment.
    Schizophrenia Research 05/2014; · 4.59 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Schizophrenia patients show significant subcortical brain abnormalities. We examined these abnormalities using automated image analysis software and provide effect size estimates for prospective multi-scanner schizophrenia studies. Subcortical and intracranial volumes were obtained using FreeSurfer 5.0.0 from high-resolution structural imaging scans from 186 schizophrenia patients (mean age±SD=38.9±11.6, 78% males) and 176 demographically similar controls (mean age±SD=37.5±11.2, 72% males). Scans were acquired from seven 3-Tesla scanners. Univariate mixed model regression analyses compared between-group volume differences. Weighted mean effect sizes (and number of subjects needed for 80% power at α=0.05) were computed based on the individual single site studies as well as on the overall multi-site study. Schizophrenia patients have significantly smaller intracranial, amygdala, and hippocampus volumes and larger lateral ventricle, putamen and pallidum volumes compared with healthy volunteers. Weighted mean effect sizes based on single site studies were generally larger than effect sizes computed based on analysis of the overall multi-site sample. Prospectively collected structural imaging data can be combined across sites to increase statistical power for meaningful group comparisons. Even when using similar scan protocols at each scanner, some between-site variance remains. The multi-scanner effect sizes provided by this study should help in the design of future multi-scanner schizophrenia imaging studies.
    Psychiatry Research Neuroimaging 01/2014; · 3.36 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: In this study, we examined the morphology of the basal ganglia and thalamus in bipolar disorder (BP), schizophrenia-spectrum disorders (SCZ-S), and healthy controls (HC) with particular interest in differences related to the absence or presence of psychosis. Volumetric and shape analyses of the basal ganglia and thalamus were performed in 33 BP individuals [12 without history of psychotic features (NPBP) and 21 with history of psychotic features (PBP)], 32 SCZ-S individuals [28 with SCZ and 4 with schizoaffective disorder], and 27 HC using FreeSurfer-initiated large deformation diffeomorphic metric mapping. Significant volume differences were found in the caudate and globus pallidus, with volumes smallest in the NPBP group. Shape abnormalities showing inward deformation of superior regions of the caudate were observed in BP (and especially in NPBP) compared with HC. Shape differences were also found in the globus pallidus and putamen when comparing the BP and SCZ-S groups. No significant differences were seen in the nucleus accumbens and thalamus. In summary, structural abnormalities in the caudate and globus pallidus are present in BP and SCZ-S. Differences were more apparent in the NPBP subgroup. The findings herein highlight the potential importance of separately examining BP subgroups in neuroimaging studies.
    Psychiatry Research Neuroimaging 01/2014; · 3.36 Impact Factor

Full-text (2 Sources)

Download
54 Downloads
Available from
May 31, 2014