Article

Quality Indicators in Laboratory Medicine: from theory to practice. Preliminary data from the IFCC Working Group Project "Laboratory Errors and Patient Safety".

Department of Laboratory Medicine and Center of Biomedical Research, University Hospital of Padova, Padova, Italy.
Clinical Chemistry and Laboratory Medicine (Impact Factor: 2.96). 02/2011; 49(5):835-44. DOI: 10.1515/CCLM.2011.128
Source: PubMed

ABSTRACT The adoption of Quality Indicators (QIs) has prompted the development of tools to measure and evaluate the quality and effectiveness of laboratory testing, first in the hospital setting and subsequently in ambulatory and other care settings. While Laboratory Medicine has an important role in the delivery of high-quality care, no consensus exists as yet on the use of QIs focussing on all steps of the laboratory total testing process (TTP), and further research in this area is required.
In order to reduce errors in laboratory testing, the IFCC Working Group on "Laboratory Errors and Patient Safety" (WG-LEPS) developed a series of Quality Indicators, specifically designed for clinical laboratories. In the first phase of the project, specific QIs for key processes of the TTP were identified, including all the pre-, intra- and post-analytic steps. The overall aim of the project is to create a common reporting system for clinical laboratories based on standardized data collection, and to define state-of-the-art and Quality Specifications (QSs) for each QI independent of: a) the size of organization and type of activities; b) the complexity of processes undertaken; and c) different degree of knowledge and ability of the staff. The aim of the present paper is to report the results collected from participating laboratories from February 2008 to December 2009 and to identify preliminary QSs.
The results demonstrate that a Model of Quality Indicators managed as an External Quality Assurance Program can serve as a tool to monitor and control the pre-, intra- and post-analytical activities. It might also allow clinical laboratories to identify risks that lead to errors resulting in patient harm: identification and design of practices that eliminate medical errors; the sharing of information and education of clinical and laboratory teams on practices that reduce or prevent errors; the monitoring and evaluation of improvement activities.

Full-text

Available from: Laura Sciacovelli, Aug 14, 2014
9 Followers
 · 
646 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Preanalytical control and monitoring continue to be an important issue for clinical laboratory professionals. The aim of the study was to evaluate a monitoring system of preanalytical errors regarding not suitable samples for analysis, based on different indicators; to compare such indicators in different phlebotomy centres; and finally to evaluate a single synthetic preanalytical indicator that may be included in the balanced scorecard management system (BSC). We collected individual and global preanalytical errors in haematology, coagulation, chemistry, and urine samples analysis. We also analyzed a synthetic indicator that represents the sum of all types of preanalytical errors, expressed in a sigma level. We studied the evolution of those indicators over time and compared indicator results by way of the comparison of proportions and Chi-square. There was a decrease in the number of errors along the years (P < 0.001). This pattern was confirmed in primary care patients, inpatients and outpatients. In blood samples, fewer errors occurred in outpatients, followed by inpatients. We present a practical and effective methodology to monitor unsuitable sample preanalytical errors. The synthetic indicator results summarize overall preanalytical sample errors, and can be used as part of BSC management system.
    Biochemia Medica 01/2015; 25(1):49-56. DOI:10.11613/BM.2015.005 · 2.40 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Laboratory diagnostics develop through different phases that span from test ordering (pre-preanalytical phase), collection of diagnostic specimens (preanalytical phase), sample analysis (analytical phase), results reporting (postanalytical phase) and interpretation (post-postanalytical phase). Although laboratory medicine seems less vulnerable than other clinical and diagnostic areas, the chance of errors is not negligible and may adversely impact on quality of testing and patient safety. This article, which continues a biennial tradition of collective papers on preanalytical quality improvement, is aimed to provide further contributions for pursuing quality and harmony in the preanalytical phase, and is a synopsis of lectures of the third European Federation of Clinical Chemistry and Laboratory Medicine (EFLM)-Becton Dickinson (BD) European Conference on Preanalytical Phase meeting entitled ‘Preanalytical quality improvement. In pursuit of harmony’ (Porto, 20–21 March 2015). The leading topics that will be discussed include unnecessary laboratory testing, management of test request, implementation of the European Union (EU) Directive on needlestick injury prevention, harmonization of fasting requirements for blood sampling, influence of physical activity and medical contrast media on in vitro diagnostic testing, recent evidence about the possible lack of necessity of the order of draw, the best practice for monitoring conditions of time and temperature during sample transportation, along with description of problems emerging from inappropriate sample centrifugation. In the final part, the article includes recent updates about preanalytical quality indicators, the feasibility of an External Quality Assessment Scheme (EQAS) for the preanalytical phase, the results of the 2nd EFLM WG-PRE survey, as well as specific notions about the evidence-based quality management of the preanalytical phase.
    Clinical Chemistry and Laboratory Medicine 12/2014; DOI:10.1515/cclm-2014-1051 · 2.96 Impact Factor
  • Journal of Medical Biochemistry 01/2012; 31(4). DOI:10.2478/v10011-012-0014-1 · 1.08 Impact Factor