A systematic review and meta-analysis of the efficacy and safety of intermittent preventive treatment of malaria in children (IPTc).

London School of Hygiene and Tropical Medicine, London, United Kingdom.
PLoS ONE (Impact Factor: 3.53). 02/2011; 6(2):e16976. DOI: 10.1371/journal.pone.0016976
Source: PubMed

ABSTRACT Intermittent preventive treatment of malaria in children less than five years of age (IPTc) has been investigated as a measure to control the burden of malaria in the Sahel and sub-Sahelian areas of Africa where malaria transmission is markedly seasonal.
IPTc studies were identified using a systematic literature search. Meta-analysis was used to assess the protective efficacy of IPTc against clinical episodes of falciparum malaria. The impact of IPTc on all-cause mortality, hospital admissions, severe malaria and the prevalence of parasitaemia and anaemia was investigated. Three aspects of safety were also assessed: adverse reactions to study drugs, development of drug resistance and loss of immunity to malaria. Twelve IPTc studies were identified: seven controlled and five non-controlled trials. Controlled studies demonstrated protective efficacies against clinical malaria of between 31% and 93% and meta-analysis gave an overall protective efficacy of monthly administered IPTc of 82% (95%CI 75%-87%) during the malaria transmission season. Pooling results from twelve studies demonstrated a protective effect of IPTc against all-cause mortality of 57% (95%CI 24%-76%) during the malaria transmission season. No serious adverse events attributable to the drugs used for IPTc were observed in any of the studies. Data from three studies that followed children during the malaria transmission season in the year following IPTc administration showed evidence of a slight increase in the incidence of clinical malaria compared to children who had not received IPTc.
IPTc is a safe method of malaria control that has the potential to avert a significant proportion of clinical malaria episodes in areas with markedly seasonal malaria transmission and also appears to have a substantial protective effect against all-cause mortality. These findings indicate that IPTc is a potentially valuable tool that can contribute to the control of malaria in areas with markedly seasonal transmission.

Download full-text


Available from: Anne Wilson, Jul 04, 2015
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: NLC topical formulation as an alternative to oral and parenteral (IM) delivery of artemether (ART), a poorly water-soluble drug was designed. A Phospholipon 85G-modified Gelucire 43/01 based NLC formulation containing 75% Transcutol was chosen from DSC studies and loaded with gradient concentration of ART (100–750 mg). ART-loaded NLCs were stable (À22 to À40 mV), polydispersed (0.4–0.7) with d90 size distribution range of 247–530 nm without microparticles up to one month of storage. The encapsulation efficiency (EE%) for ART in the NLC was concentration independent as 250 mg of ART loading achieved $61%. DSC confirmed molecular dispersion of ART due to low matrix crystallinity (0.028 J/g). Ex vivo study showed detectable ART amounts after 20 h which gradually increased over 48 h achieving $26% cumulative amount permeated irrespective of the applied dose. This proves that ART permeates excised human epidermis, where the current formulation served as a reservoir to gradually control drug release over an extended period of time. Full thickness skin study therefore may confirm if this is a positive signal to hope for a topical delivery system of ART. ã 2014 Elsevier B.V. All rights reserved.
    International Journal of Pharmaceutics 10/2014; 477:208-217. DOI:10.1016/j.ijpharm.2014.10.004;
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In children, the Intermittent Preventive Treatment (IPTc), currently called Seasonal Malaria Chemoprevention (SMC), was considered effective on malaria control due to the reduction of its incidence in Papua New Guinea and in some areas with seasonal malaria in Africa. However, the IPT has not been indicated because of its association with drug resistance and for hindering natural immunity development. Thus, we evaluated the alternative IPT impact on malaria incidence in three riverside communities on Madeira River, in the municipality of Porto Velho, RO. We denominate this scheme Selective Intermittent Preventive Treatment (SIPT). The SIPT consists in a weekly dose of two 150 mg chloroquine tablets for 12 weeks, for adults, and an equivalent dose for children, after complete supervised treatment for P. vivax infection. This scheme is recommend by Brazilian Health Ministry to avoid frequent relapses. The clinic parasitological and epidemiological surveillance showed a significant reduction on vivax malaria incidence. The results showed a reduction on relapses and recurrence of malaria after SIPT implementation. The SIPT can be effective on vivax malaria control in localities with high transmission risk in the Brazilian Amazon.
    Malaria Research and Treatment 03/2013; 2013:310246. DOI:10.1155/2013/310246
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Trials of intermittent preventive treatment in infants (IPTi) and children (IPTc) have shown promising results in reducing malaria episodes but with varying efficacy and cost-effectiveness. The effects of different intervention and setting characteristics are not well known. We simulate the effects of the different target age groups and delivery channels, seasonal or year-round delivery, transmission intensity, seasonality, proportions of malaria fevers treated and drug characteristics. We use a dynamic, individual-based simulation model of Plasmodium falciparum malaria epidemiology, antimalarial drug action and case management to simulate DALYs averted and the cost per DALY averted by IPTi and IPTc. IPT cost components were estimated from economic studies alongside trials. IPTi and IPTc were predicted to be cost-effective in most of the scenarios modelled. The cost-effectiveness is driven by the impact on DALYs, particularly for IPTc, and the low costs, particularly for IPTi which uses the existing delivery strategy, EPI. Cost-effectiveness was predicted to decrease with low transmission, badly timed seasonal delivery in a seasonal setting, short-acting and more expensive drugs, high frequencies of drug resistance and high levels of treatment of malaria fevers. Seasonal delivery was more cost-effective in seasonal settings, and year-round in constant transmission settings. The difference was more pronounced for IPTc than IPTi due to the different proportions of fixed costs and also different assumed drug spacing during the transmission season. The number of DALYs averted was predicted to decrease as a target five-year age-band for IPTc was shifted from children under 5 years into older ages, except at low transmission intensities. Modelling can extend the information available by predicting impact and cost-effectiveness for scenarios, for outcomes and for multiple strategies where, for practical reasons, trials cannot be carried out. Both IPTi and IPTc are generally cost-effective but could be rendered cost-ineffective by characteristics of the setting, drug or implementation.
    PLoS ONE 04/2011; 6(4):e18391. DOI:10.1371/journal.pone.0018391