Article

Variable Expression of Neurofibromatosis 1 in Monozygotic Twins

Eastern Maine Medical Center, Bangor, Maine, USA.
American Journal of Medical Genetics Part A (Impact Factor: 2.05). 03/2011; 155A(3):478-85. DOI: 10.1002/ajmg.a.33851
Source: PubMed

ABSTRACT Neurofibromatosis 1 (NF1) is a common autosomal dominant disorder with high penetrance but extreme variability of expression. Monozygotic (MZ) twins with NF1 who have phenotypic discordances are a useful tool in evaluating which traits are influenced by non-hereditary influences such as second hit somatic events, environmental agents, epigenetic modification, or post-zygotic mutations. We evaluated nine sets of MZ twins and one set of MZ triplets, ages 4-18 years, for NF1 features and calculated probandwise concordance (P(C)) for each feature. MZ twins were highly concordant in numbers of café-au-lait spots (P(C) = 0.89) and cutaneous neurofibromas. IQ scores were within 10 points for all twin pairs tested, and similar patterns of learning disabilities and speech disorders were observed. Twin pairs showed significant discordance for tumors, particularly plexiform neurofibromas (P(C) = 0.40) and malignant peripheral nerves sheath tumors (MPNST), as expected if post-natal second-hit events were contributing to these features. One set of twins was concordant for multiple, large paraspinal neurofibromas, suggesting that there may be more hereditary factors involved in production of paraspinal neurofibromas. Four sets were concordant for pectus deformities of the chest (P(C) = 0.80). Three sets of twins were discordant for scoliosis (P(C) = 0.40); an additional set was concordant for scoliosis but differed in presence of dystrophic features and need for surgery. Our data suggest there are additional non-hereditary factors modifying the NF1 phenotype and causing discordancies between MZ twins. Future studies may focus on differences in epigenetic changes or somatic mosaicism which have been documented for other disease genes in MZ twins.

Download full-text

Full-text

Available from: Lisa Martin, Sep 18, 2014
0 Followers
 · 
131 Views
  • Source
    Management of CNS Tumors, 09/2011; , ISBN: 978-953-307-646-1
  • [Show abstract] [Hide abstract]
    ABSTRACT: With the emergence of high-throughput discovery platforms, robust preclinical small-animal models, and efficient clinical trial pipelines, it is becoming possible to envision a time when the treatment of human neurologic diseases will become personalized. The emergence of precision medicine will require the identification of subgroups of patients most likely to respond to specific biologically based therapies. This stratification only becomes possible when the determinants that contribute to disease heterogeneity become more fully elucidated. This review discusses the defining factors that underlie disease heterogeneity relevant to the potential for individualized brain tumor (optic pathway glioma) treatments arising in the common single-gene cancer predisposition syndrome, neurofibromatosis type 1 (NF1). In this regard, NF1 is posited as a model genetic condition to establish a workable paradigm for actualizing precision therapeutics for other neurologic disorders.
    Neurology 06/2014; 83(5). DOI:10.1212/WNL.0000000000000652 · 8.30 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Although neurofibromatosis 1 (NF1) is a common Mendelian disorder with autosomal-dominant inheritance, its expression is highly variable and unpredictable. Many NF1 patients have been genotyped but few allele-phenotype correlations have been identified. NF1 genotype-phenotype correlations are difficult to identify because of the complexity of the NF1 phenotype, its strong age dependency, the relatedness of many clinical features and the huge heterogeneity of pathogenic NF1 mutations. Some NF1 patients with a given NF1 mutation may develop very severe disease while others with the same mutation have only mild symptoms. This phenotypic variability may be due to both modifier genes and environmental factors. Recent targeted strategies have identified several interesting candidate modifier genes.
    Journal of Medical Genetics 08/2012; 49(8):483-9. DOI:10.1136/jmedgenet-2012-100978 · 5.64 Impact Factor