Article

Mutant huntingtin binds the mitochondrial fission GTPase dynamin-related protein-1 and increases its enzymatic activity.

Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida, USA.
Nature medicine (Impact Factor: 28.05). 02/2011; 17(3):377-82. DOI: 10.1038/nm.2313
Source: PubMed

ABSTRACT Huntington's disease is an inherited and incurable neurodegenerative disorder caused by an abnormal polyglutamine (polyQ) expansion in huntingtin (encoded by HTT). PolyQ length determines disease onset and severity, with a longer expansion causing earlier onset. The mechanisms of mutant huntingtin-mediated neurotoxicity remain unclear; however, mitochondrial dysfunction is a key event in Huntington's disease pathogenesis. Here we tested whether mutant huntingtin impairs the mitochondrial fission-fusion balance and thereby causes neuronal injury. We show that mutant huntingtin triggers mitochondrial fragmentation in rat neurons and fibroblasts of individuals with Huntington's disease in vitro and in a mouse model of Huntington's disease in vivo before the presence of neurological deficits and huntingtin aggregates. Mutant huntingtin abnormally interacts with the mitochondrial fission GTPase dynamin-related protein-1 (DRP1) in mice and humans with Huntington's disease, which, in turn, stimulates its enzymatic activity. Mutant huntingtin-mediated mitochondrial fragmentation, defects in anterograde and retrograde mitochondrial transport and neuronal cell death are all rescued by reducing DRP1 GTPase activity with the dominant-negative DRP1 K38A mutant. Thus, DRP1 might represent a new therapeutic target to combat neurodegeneration in Huntington's disease.

Full-text

Available from: Geraldine Liot, Jun 16, 2015
1 Follower
 · 
167 Views
  • Heterocycles 01/2012; 86(2):1449. DOI:10.3987/COM-12-S(N)109 · 0.91 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: X-linked adrenoleukodystrophy (X-ALD) is an inherited neurodegenerative disorder expressed as four disease variants characterized by adrenal insufficiency and graded damage in the nervous system. X-ALD is caused by a loss of function of the peroxisomal ABCD1 fatty-acid transporter, resulting in the accumulation of very long chain fatty acids (VLCFA) in the organs and plasma, which have potentially toxic effects in CNS and adrenal glands. We have recently shown that treatment with a combination of antioxidants containing α-tocopherol, N-acetyl-cysteine and α-lipoic acid reversed oxidative damage and energetic failure, together with the axonal degeneration and locomotor impairment displayed by Abcd1 null mice, the animal model of X-ALD. This is the first direct demonstration that oxidative stress, which is a hallmark not only of X-ALD, but also of other neurodegenerative processes, such as Alzheimer's disease (AD), Parkinson's disease (PD) and Huntington's disease (HD), contributes to axonal damage. The purpose of this review is, first, to discuss the molecular and cellular underpinnings of VLCFA-induced oxidative stress, and how it interacts with energy metabolism and/or inflammation to generate a complex syndrome wherein multiple factors are contributing. Particular attention will be paid to the dysregulation of redox homeostasis by the interplay between peroxisomes and mitochondria. Second, we will extend this analysis to the aforementioned neurodegenerative diseases with the aim of defining differences as well as the existence of a core pathogenic mechanism that would justify the exchange of therapeutic opportunities among these pathologies. This article is part of a Special Issue entitled: Metabolic functions and biogenesis of peroxisomes in health and disease.
    Biochimica et Biophysica Acta 02/2012; 1822(9):1475-88. DOI:10.1016/j.bbadis.2012.02.005 · 4.66 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Due to the small size of mitochondria and the complexity of their motility patterns, mitochondrial tracking is technically challenging. Mitochondria are often tracked manually; however, this is time-consuming and prone to measurement error. Here, we examined the suitability of four commercial and open-source software alternatives for automated mitochondrial tracking in neurons compared with manual measurements. We show that all the automated tracking tools dramatically underestimated track length, mitochondrial displacement and movement duration, with reductions ranging from 45 to 77 % of the values obtained manually. In contrast, mitochondrial velocity was generally overestimated. Only the number of motile mitochondria and their directionality were similar between strategies. Despite these discrepancies, we show that automated tools successfully detected transport alterations after applying an oxidant agent. Thus, automated methods appear to be suitable for assessing relative transport differences between experimental groups, but not for absolute quantification of mitochondrial dynamics. Although useful for objective and time-efficient measurements of mitochondrial movements, results provided by automated methods should be interpreted with caution. This article is protected by copyright. All rights reserved.
    Traffic 04/2015; DOI:10.1111/tra.12291 · 4.71 Impact Factor