Article

Anticancer effects of the p53 activator nutlin-3 in Ewing's sarcoma cells.

University Children's Hospital Jena, Department of Paediatric Haematology and Oncology, Jena, Germany.
European journal of cancer (Oxford, England: 1990) (Impact Factor: 4.12). 02/2011; 47(9):1432-41. DOI: 10.1016/j.ejca.2011.01.015
Source: PubMed

ABSTRACT Mutation of p53 is rare in Ewing's sarcoma (ES), suggesting that targeting and activation of wild-type p53 may be an effective therapeutic strategy for ES. The recently developed small-molecule MDM2 inhibitor nutlin-3 restores wild-type p53 function, resulting in the inhibition of cancer cell growth and the induction of apoptosis. In the present study, we explored the responsiveness of ES cell lines with wild-type or mutated p53 to nutlin-3. We found that treatment with nutlin-3 increased p53 level and induced p53 target gene expression (MDM2, p21, PUMA) in ES cells with wild-type p53, but not in ES cells with mutated p53. Consistently, nutlin-3 elicited apoptosis only in wild-type p53 cells, as assessed by caspase-3 activity assay and flow cytometric analyses of mitochondrial depolarisation and DNA fragmentation. In addition, we found nutlin-3 to evoke cellular senescence, indicating that nutlin-3 induces pleiotropic anticancer effects in ES. Furthermore, combined treatment with nutlin-3 and an inhibitor of NF-κB produced synergistic antineoplastic activity in ES cells. Our findings suggest that the direct activation of p53 by nutlin-3 treatment may be a useful new therapeutic approach for patients with ES.

0 Bookmarks
 · 
88 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Survivin belongs to the family of apoptosis inhibitors (IAPs), which antagonizes the induction of cell death. Dysregulated expression of IAPs is frequently observed in cancers, and the high levels of survivin in tumors compared to normal adult tissues make it an attractive target for pharmacological interventions. The small imidazolium-based compound YM155 has recently been reported to block the expression of survivin via inhibition of the survivin promoter. Recent data, however, question that this is the sole and main effect of this drug, which is already being tested in ongoing clinical studies. Here, we critically review the current data on YM155 and other new experimental agents supposed to antagonize survivin. We summarize how cells from various tumor entities and with differential expression of the tumor suppressor p53 respond to this agent in vitro and as murine xenografts. Additionally, we recapitulate clinical trials conducted with YM155. Our article further considers the potency of YM155 in combination with other anti-cancer agents and epigenetic modulators. We also assess state-of-the-art data on the sometimes very promiscuous molecular mechanisms affected by YM155 in cancer cells.
    Biochimica et Biophysica Acta 01/2014; · 4.66 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Nanotechnology, although still in its infantile stages, has the potential to revolutionize the diagnosis, treatment, and monitoring of disease progression and success of therapy for numerous diseases and conditions, not least of which is cancer. As it is a leading cause of mortality worldwide, early cancer detection, as well as safe and efficacious therapeutic intervention, will be indispensable in improving the prognosis related to cancers and overall survival rate, as well as health-related quality of life of patients diagnosed with cancer. The development of a relatively new field of nanomedicine, which combines various domains and technologies including nanotechnology, medicine, biology, pharmacology, mathematics, physics, and chemistry, has yielded different approaches to addressing these challenges. Of particular relevance in cancer, nanosystems have shown appreciable success in the realm of diagnosis and treatment. Characteristics attributable to these systems on account of the nanoscale size range allow for individualization of therapy, passive targeting, the attachment of targeting moieties for more specific targeting, minimally invasive procedures, and real-time imaging and monitoring of in vivo processes. Furthermore, incorporation into nanosystems may have the potential to reintroduce into clinical practice drugs that are no longer used because of various shortfalls, as well as aid in the registration of new, potent drugs with suboptimal pharmacokinetic profiles. Research into the development of nanosystems for cancer diagnosis and therapy is thus a rapidly emerging and viable field of study.
    International Journal of Nanomedicine 01/2014; 9:589-613. · 4.20 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: p53 is one of the main regulators of apoptosis, senescence, cell cycle arrest and DNA repair. The expression, function and stabilization of p53 are governed by a complex network of regulators including p14ARF and MDM2. MDM2 is the main negative regulator of p53 activity and stability. Unlike tumours in adults, which tend to overcome p53 regulation by p53 mutations, the paediatric tumours neuroblastoma and sarcoma frequently retain wild type p53. Nevertheless, in childhood cancer the p53 pathway is commonly impaired due to upstream MDM2-p14ARF-p53 network aberrations. In contrast, aberrations of the p53 downstream pathway are very rare. In cancer cells with intact p53 downstream function MDM2 inhibition, and subsequent rapid increases in nuclear p53 levels, potently "re-activate" dormant apoptotic pathways and rapidly induce apoptotic cell death. As a result MDM2-p53 interaction inhibitors, including cis-imidazolines analogs (Nutlins), are potentially very effective agents in neuroblastoma and sarcomas. Predictive biomarkers are important as a lack of p53 mutations appears to reliably predict response to these inhibitors. Tumours should be screened for p53 mutations in children considered for MDM2-p53 interaction inhibitors. In addition, it is essential that other predictive biomarkers are investigated. The serum concentration of macrophage inhibitory cytokine-1 (MIC-1) may be a good pharmacodynamic biomarker based on recent findings. In conclusion, targeting the interaction between p53 and its main negative regulator MDM2 represents a major new therapeutic approach in poor prognosis paediatric malignancies without p53 mutations.
    Current drug targets 01/2014; · 3.93 Impact Factor

Similar Publications