Article

Plant stem cell signaling involves ligand-dependent trafficking of the CLAVATA1 receptor kinase.

Division of Biology, California Institute of Technology, Pasadena, CA 91125, USA.
Current biology: CB (Impact Factor: 10.99). 02/2011; 21(5):345-52. DOI: 10.1016/j.cub.2011.01.039
Source: PubMed

ABSTRACT Cell numbers in above-ground meristems of plants are thought to be maintained by a feedback loop driven by perception of the glycopeptide ligand CLAVATA3 (CLV3) by the CLAVATA1 (CLV1) receptor kinase and the CLV2/CORYNE (CRN) receptor-like complex. CLV3 produced in the stem cells at the meristem apex limits the expression level of the stem cell-promoting homeodomain protein WUSCHEL (WUS) in the cells beneath, where CLV1 and WUS RNA are localized. WUS downregulation nonautonomously reduces stem cell proliferation. Overexpression of CLV3 eliminates the stem cells, causing meristem termination, and loss of CLV3 function allows meristem overproliferation. There are many questions regarding the CLV3/CLV1 interaction, including where in the meristem it occurs, how it is regulated, and how it is that a large range of CLV3 concentrations gives no meristem size phenotype.
Here we use genetics and live imaging to examine the cell biology of CLV1 in Arabidopsis meristematic tissue. We demonstrate that plasma membrane-localized CLV1 is reduced in concentration by CLV3, which causes trafficking of CLV1 to lytic vacuoles. We find that changes in CLV2 activity have no detectable effects on CLV1 levels. We also find that CLV3 appears to diffuse broadly in meristems, contrary to a recent sequestration model.
This study provides a new model for CLV1 function in plant stem cell maintenance and suggests that downregulation of plasma membrane-localized CLV1 by its CLV3 ligand can account for the buffering of CLV3 signaling in the maintenance of stem cell pools in plants.

0 Bookmarks
 · 
110 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Development in multicellular organisms requires the coordinated production of a large number of specialized cell types through sophisticated signaling mechanisms. Non-cell-autonomous signals are one of the key mechanisms by which organisms coordinate development. In plants, intercellular movement of transcription factors and other mobile signals, such as hormones and peptides, is essential for normal development. Through a combination of different approaches, a large number of non-cell-autonomous signals that control plant development have been identified. We review some of the transcriptional regulators that traffic between cells, as well as how changes in symplasmic continuity affect and are affected by development. We also review current models for how mobile signals move via plasmodesmata and how movement is inhibited. Finally, we consider challenges in and new tools for studying protein movement.
    Annual Review of Cell and Developmental Biology 10/2014; 30:207-33. DOI:10.1146/annurev-cellbio-100913-012915 · 20.24 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Plants must adapt to their environment and require mechanisms for sensing their surroundings and responding appropriately. An expanded family of more than 200 leucine-rich repeat (LRR) receptor kinases (LRR-RKs) transduces fluctuating and often contradictory signals from the environment into changes in nuclear gene expression. Two LRR-RKs, BRASSINOSTEROID INSENSITIVE 1 (BRI1), a steroid receptor, and FLAGELLIN SENSITIVE 2 (FLS2), an innate immune receptor that recognizes bacterial flagellin, act cooperatively to partition necessary growth–defense trade-offs. BRI1 and FLS2 share common signaling components and slightly different activation mechanisms. BRI1 and FLS2 are paradigms for understanding the signaling mechanisms of LRR-containing receptors in plants.
    Trends in Biochemical Sciences 10/2014; 39(10). DOI:10.1016/j.tibs.2014.06.006 · 13.52 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Plants possess the ability to continually produce new tissues and organs throughout their life. Unlike animals, plants are exposed to extreme variations in environmental conditions over the course of their lives. The vitality of plants is so powerful that they can survive several hundreds of years or even more making it an amazing miracle that comes from plant stem cells. The stem cells continue to divide to renew themselves and provide cells for the formation of leaves, stems, and flowers. Stem cells are not only quiescent but also immortal, pluripotent and homeostatic. Stem cells are the magic cells that repair tissues and regenerate organs. During the past decade, scholars around the world have paid more and more attention toward plant stem cells. At present, the major challenge is in relating molecule action mechanism to root apical meristem, shoot apical meristem and vascular system. The coordination between stem cells maintenance and differentiation is critical for normal plant growth and development. Elements such as phytohormones, transcription factors and some other known or unknown genes cooperate to balance this process. In this review, Arabidopsis thaliana as a pioneer system, we highlight recent developments in molecule modulating, illustrating how plant stem cells generate new mechanistic insights into the regulation of plants growth and development.
    Pharmacognosy Reviews 07/2014; 8(16):105-12. DOI:10.4103/0973-7847.134243
    This article is viewable in ResearchGate's enriched format

Full-text (2 Sources)

Download
32 Downloads
Available from
Jul 8, 2014