Medicarpin, a legume phytoalexin, stimulates osteoblast differentiation and promotes peak bone mass achievement in rats: evidence for estrogen receptor β-mediated osteogenic action of medicarpin.

Division of Endocrinology, Central Drug Research Institute (Council of Scientific and Industrial Research), Chattar Manzil, P.O. Box 173, Lucknow, India.
The Journal of nutritional biochemistry (Impact Factor: 4.29). 02/2011; 23(1):27-38. DOI: 10.1016/j.jnutbio.2010.11.002
Source: PubMed

ABSTRACT Dietary isoflavones including genistein and daidzein have been shown to have favorable bone conserving effects during estrogen deficiency in experimental animals and humans. We have evaluated osteogenic effect of medicarpin (Med); a phytoalexin that is structurally related to isoflavones and is found in dietary legumes. Med stimulated osteoblast differentiation and mineralization at as low as 10⁻¹⁰ M. Studies with signal transduction inhibitors demonstrated involvement of a p38 mitogen activated protein kinase-ER-bone morphogenic protein-2 pathway in mediating Med action in osteoblasts. Co-activator interaction studies demonstrated that Med acted as an estrogen receptor (ER) agonist; however, in contrast to 17β-estradiol, Med had no uterine estrogenicity and blocked proliferation of MCF-7 cells. Med increased protein levels of ERβ in osteoblasts. Selective knockdown of ERα and ERβ in osteoblasts established that osteogenic action of Med is ERβ-dependent. Female Sprague-Dawley (weaning) rats were administered Med at 1.0- and 10.0⁻¹ doses by gavage for 30 days along with vehicle control. Med treatment resulted in increased formation of osteoporgenitor cells in the bone marrow and osteoid formation (mineralization surface, mineral apposition/bone formation rates) compared with vehicle group. In addition, Med increased cortical thickness and bone biomechanical strength. In pharmacokinetic studies, Med exhibited oral bioavailability of 22.34% and did not produce equol. Together, our results demonstrate Med stimulates osteoblast differentiation likely via ERβ, promotes achievement of peak bone mass, and is devoid of uterine estrogenicity. In addition, given its excellent oral bioavailability, Med can be potential osteogenic agent.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Retinoic acid receptor β (RARβ) has been proposed to act as a tumor suppressor in breast cancer. In contrast, recent data have shown that RARβ promotes ERBB2-induced mammary gland tumorigenesis through remodeling of the stromal compartment and activation of cancer-associated fibroblasts. However, it is currently unknown whether RARβ oncogenic activity is specific to ERBB2-induced tumors, or whether it influences the initiation and progression of other breast cancer subtypes. Accordingly, we set out to investigate the involvement of RARβ in basal-like breast cancer using mouse mammary tumor virus (MMTV)-wingless-related integration site 1 (Wnt1)-induced mammary gland tumorigenesis as a model system. We found that compared with wild type mice, inactivation of Rarb resulted in a lengthy delay in Wnt1-induced mammary gland tumorigenesis and in a significantly slower tumor growth rate. Ablation of Rarb altered the composition of the stroma, repressed the activation of cancer-associated fibroblasts, and reduced the recruitment of inflammatory cells and angiogenesis. Reduced expression of IGF-1 and activity of its downstream signaling pathway contribute to attenuate EMT in the Rarb-null tumors. Our results show that, in the absence of retinoid signaling via RARβ, reduced IGF-1 signaling results in suppression of epithelial-mesenchymal transition and delays tumorigenesis induced by the Wnt1 oncogene. Accordingly, our work reinforces the concept that antagonizing RARβ-dependent retinoid signaling could provide a therapeutic avenue to treat poor outcome breast cancers.
    Nuclear Receptor Signaling 01/2014; 12:e004.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The establishment of effective high throughput screening cascades to identify nuclear receptor (NR) ligands that will trigger defined, therapeutically useful sets of NR activities is of considerable importance. Repositioning of existing approved drugs with known side effect profiles can provide advantages because de novo drug design suffers from high developmental failure rates and undesirable side effects which have dramatically increased costs. Ligands that target estrogen receptor β (ERβ) could be useful in a variety of diseases ranging from cancer to neurological to cardiovascular disorders. In this context, it is important to minimize cross-reactivity with ERα, which has been shown to trigger increased rates of several types of cancer. Because of high sequence similarities between the ligand binding domains of ERα and ERβ, preferentially targeting one subtype can prove challenging. Here, we describe a sequential ligand screening approach comprised of complementary in-house assays to identify small molecules that are selective for ERβ. Methods include differential scanning fluorimetry, fluorescence polarization and a GAL4 transactivation assay. We used this strategy to screen several commercially-available chemical libraries, identifying thirty ERβ binders that were examined for their selectivity for ERβ versus ERα, and tested the effects of selected ligands in a prostate cancer cell proliferation assay. We suggest that this approach could be used to rapidly identify candidates for drug repurposing.
    Nuclear Receptor Signaling 01/2014; 12:e003.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Tumor necrosis factor α-related apoptosis-inducing ligand (TRAIL) is a promising anticancer agent with cancer cell-selective cell death inducing effect. However, the major limitation in the usage of TRAIL as a chemotherapeutic agent is the development of TRAIL resistance in many cancer types including myeloid leukemia. In this study, we report for the first time that Medicarpin (Med), a naturally occurring phytoalexin sensitizes myeloid leukemia cells to TRAIL-induced apoptosis. Combination of Med and TRAIL induced significantly higher apoptosis compared with that of the individual treatments of either agent alone through activation of both the extrinsic and the intrinsic cell death pathways characterized by the activation of caspases 8, 9, 3, and 7. Med treatment downregulated antiapoptotic proteins (Survivin, Bcl2, Bcl-xL, XIAP, and c-FLIP), upregulated pro-apoptotic proteins (Bax, Cytochrome C, Smac/Diablo, Bid, truncated Bid (tBid), p-eIF2α, Bip, and CHOP (CCAAT-enhancer binding protein homologous protein)), induced G2/M cell-cycle arrest, and increased the expression of the functional TRAIL receptor DR5 through activation of the ROS-JNK-CHOP pathway. Gain and loss of function studies clearly indicated that DR5 expression was critical for Med-induced TRAIL sensitization. The Med-induced TRAIL sensitization did not involve the NFkB signaling pathway or redistribution of DR5 in lipid rafts. The concomitant treatment with Med and TRAIL showed robust apoptotic effects in primary myeloid leukemia cells but had no toxic effects in primary human peripheral blood mononuclear cells (PBMCs). In conclusion, our results suggest that Med sensitizes myeloid leukemia cells to TRAIL-induced apoptosis through the upregulation of DR5 through activation of the ROS-JNK-CHOP pathway.
    Cell Death & Disease 10/2014; 5:e1465. · 5.18 Impact Factor

Full-text (2 Sources)

Available from
Jul 24, 2014