Article

Symmetrical modification within a nucleosome is not required globally for histone lysine methylation.

Life Science College, Beijing Normal University, Beijing 100875, China.
EMBO Reports (Impact Factor: 7.86). 02/2011; 12(3):244-51. DOI: 10.1038/embor.2011.6
Source: PubMed

ABSTRACT Two copies of each core histone exist in every nucleosome; however, it is not known whether both histones within a nucleosome are required to be symmetrically methylated at the same lysine residues. We report that for most lysine methylation states, wild-type histones paired with mutant, unmethylatable histones in mononucleosomes have comparable methylation levels to bulk histones. Our results indicate that symmetrical histone methylation is not required on a global scale. However, wild-type H4 histones paired with unmethylatable H4K20R histones showed reduced levels of H4K20me2 and H4K20me3, suggesting that some fractions of these modifications might exist symmetrically, and enzymes mediating these modifications might, to some extent, favour nucleosome substrates with premethylated H4K20.

Full-text

Available from: She Chen, Jan 11, 2015
1 Follower
 · 
140 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Histone proteins are dynamically modified to mediate a variety of cellular processes including gene transcription, DNA damage repair, and apoptosis. Regulation of these processes occurs through the recruitment of non-histone proteins to chromatin by specific combinations of histone post-translational modifications (PTMs). Mass spectrometry has emerged as an essential tool to discover and quantify histone PTMs both within and between samples in an unbiased manner. Developments in mass spectrometry that allow for characterization of large histone peptides or intact protein has made it possible to determine which modifications occur simultaneously on a single histone polypeptide. A variety of techniques from biochemistry, biophysics, and chemical biology have been employed to determine the biological relevance of discovered combinatorial codes. This review first describes advancements in the field of mass spectrometry that have facilitated histone PTM analysis and then covers notable approaches to probe the biological relevance of these modifications in their nucleosomal context.
    Frontiers in Genetics 12/2013; 4:264. DOI:10.3389/fgene.2013.00264
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In 1984 Sir Francis Crick hypothesized that memory is recorded in the brain as reversible modifications to DNA and protein, but acknowledged that most biomolecules turn over too rapidly to account for long-term memories. To accommodate this possible paradox he modeled an enzymatic mechanism to maintain modifications on hemi-modified multimeric symmetrical molecules. While studies on the turnover of chromatin modifications that may be involved in memory are in their infancy, an exploration of his model in the light of modern epigenetics produced somewhat surprising results. The molecular turnover rates for two classes of chromatin modifications believed to record and store durable memories were approximated from experiments using diverse approaches and were found to be remarkably short. The half-lives of DNA cytosine methylation and post-translationally modified nucleosomal histones are measured in hours and minutes, respectively, for a subset of sites on chromatin controlling gene expression. It appears likely that the turnover of DNA methylation in the brain and in neurons, in particular, is even more rapid than in other cell types and organs, perhaps accommodating neuronal plasticity, learning, and memory. The machinery responsible for the rapid turnover of DNA methylation and nucleosomal histone modifications is highly complex, partially redundant, and appears to act in a sequence specific manner. Molecular symmetry plays an important part in maintaining site-specific turnover, but its particular role in memory maintenance is unknown. Elucidating Crick's paradox, the contradiction between rapid molecular turnover of modified biomolecules and long-term memory storage, appears fundamental to understanding cognitive function and neurodegenerative disease.
    Epigenetics & Chromatin 12/2014; 7(1):37. DOI:10.1186/1756-8935-7-37 · 4.46 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: GLP and G9a are major H3K9 dimethylases and are essential for mouse early embryonic development. GLP and G9a both harbor ankyrin repeat domains that are capable of binding H3K9 methylation. However, the functional significance of their recognition of H3K9 methylation is unknown. Here, we report that the histone methyltransferase activities of GLP and G9a are stimulated by neighboring nucleosomes that are premethylated at H3K9. These stimulation events function in cis and are dependent on the H3K9 methylation binding activities of ankyrin repeat domains of GLP and G9a. Disruption of the H3K9 methylation-binding activity of GLP in mice causes growth retardation of embryos, ossification defects of calvaria, and postnatal lethality due to starvation of the pups. In mouse embryonic stem cells (ESCs) harboring a mutant GLP that lacks H3K9me1-binding activity, critical pluripotent genes, including Oct4 and Nanog, display inefficient establishment of H3K9me2 and delayed gene silencing during differentiation. Collectively, our study reveals a new activation mechanism for GLP and G9a that plays an important role in ESC differentiation and mouse viability. © 2015 Liu et al.; Published by Cold Spring Harbor Laboratory Press.