Article

Coordinated regulation of extracellular matrix synthesis by the microRNA-29 family in the trabecular meshwork.

Department of Ophthalmology, Massachusetts Eye & Ear Infirmary, Harvard Medical School, Boston, Massachusetts 02114, USA.
Investigative ophthalmology & visual science (Impact Factor: 3.43). 02/2011; 52(6):3391-7. DOI: 10.1167/iovs.10-6165
Source: PubMed

ABSTRACT The microRNA-29 (miR-29) family has emerged, in various tissues, as a key modulator of extracellular matrix (ECM) homeostasis. In this study, the authors investigate the role of the miR-29 family in the regulation of ECM synthesis in the trabecular meshwork (TM) under basal and TGF-β2 stimulatory conditions.
Human TM cells were incubated with 2.5 ng/mL activated, recombinant human TGF-β2 for 24, 48, and 72 hours. A specific pharmacologic inhibitor was used to block SMAD3 function in the context of TGF-β2 stimulation. Changes in the expression of the miR-29 family were assessed by real-time PCR. The effect of miR-29 molecules and inhibitors on ECM levels was determined by immunoblot analysis.
All three members of the miR-29 family were expressed in cultured TM cells. Although the incubation of TM cells with TGF-β2 induced miR-29a and suppressed miR-29b levels, no significant effect was observed on miR-29c expression. Additional studies revealed that SMAD3 modulates miR-29b expression under basal and TGF-β2 conditions. Subsequent gain- and loss-of-function experiments demonstrated that the miR-29 family functions as a critical suppressor of various ECM proteins under basal and TGF-β2 stimulatory conditions.
The findings derived from this study identify the miR-29 family as a critical regulator of ECM expression in the TM and suggest that its modulation by TGF-β2 may be important in controlling ECM synthesis. Together, these data provide further insight into the complex regulatory mechanisms mediating TGF-β2 signaling and ECM production in the TM.

0 Bookmarks
 · 
82 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Abstract Primary open-angle glaucoma (POAG) is a leading cause of blindness worldwide, and intraocular pressure (IOP) is an important modifiable risk factor. IOP is a function of aqueous humor production and aqueous humor outflow, and it is thought that prolonged IOP elevation leads to optic nerve damage over time. Within the trabecular meshwork (TM), the eye's primary drainage system for aqueous humor, matricellular proteins generally allow cells to modulate their attachments with and alter the characteristics of their surrounding extracellular matrix (ECM). It is now well established that ECM turnover in the TM affects outflow facility, and matricellular proteins are emerging as significant players in IOP regulation. The formalized study of matricellular proteins in TM has gained increased attention. Secreted protein acidic and rich in cysteine (SPARC), myocilin, connective tissue growth factor (CTGF), and thrombospondin-1 and -2 (TSP-1 and -2) have been localized to the TM, and a growing body of evidence suggests that these matricellular proteins play an important role in IOP regulation and possibly the pathophysiology of POAG. As evidence continues to emerge, these proteins are now seen as potential therapeutic targets. Further study is warranted to assess their utility in treating glaucoma in humans.
    Journal of Ocular Pharmacology and Therapeutics 06/2014; 30(6). · 1.42 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: MicroRNA (miRNA) is a small non-coding regulatory RNA of 21-25 nucleotides (nts) in length. miRNA works as a post-transcriptional regulator of a specific mRNA by inducing degradation or translation repression resulting in gene silencing. A large number of miRNA have been reported and many more are yet to be discovered. Aberrant expression of miRNA has been linked to numerous diseases. Attempts have been made to attenuate miRNA misregulation under pathophysiological conditions. Additionally, the potential use of miRNA in the diagnosis and treatment of diseases has been studied. Several pre-clinical and clinical results have been obtained, and miRNA-based therapeutics are still under investigations. In this review, the role of miRNA in a variety of pathological conditions has been summarized. Recent findings from pre-clinical and clinical investigations examining the role of miRNA as diagnostic markers, and their potential as drug candidates, are also highlighted. The current results summarized in this review may elucidate new dimensions of miRNA therapeutic and diagnostic techniques for biomedical academic and industry research.
    Biochimie 09/2014; · 3.14 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Angiotensin II (Ang II) has been proven to induce epithelial-mesenchymal transition (EMT). The aim of the present study was to determine the role of microRNA-29b (miR-29b) during Ang II-induced EMT. For this purpose, we used spontaneously hypertensive rats (SHRs) and age-matched Wistar-Kyoto (WKY) rats. The levels of Ang II and its receptor in the kidneys of the SHRs are significantly higher than those in the age-matched WKY rats. As shown by RT-qPCR, the expression of miR-29b in the renal cortex was lower in the SHRs than in the WKY rats. For in vitro experiments, NRK-52E renal tubular epithelial cells were treated with 10-7 M Ang II; we found that the expression of miR-29b was decreased in the cells treated with Ang II. In addition, transfection of the NRK-52E cells with miR-29b inhibitor led to the downregulation of miR-29b in these cells, and increased the expression of transforming growth factor (TGF)-β, α-smooth muscle actin (α-SMA) and collagen I (Col I). Similar results were observed with the induction of Ang II expression in the NRK-52E cells. By contrast, the upregulation of miR-29b by transfection with miR-29b mimics inhibited the overexpression of these genes induced by Ang II. These results suggest that miR-29b plays an important role in Ang II-induced EMT.
    International Journal of Molecular Medicine 09/2014; · 1.88 Impact Factor

Preview

Download
9 Downloads
Available from