Functionally competent cardiac stem cells can be isolated from endomyocardial biopsies of patients with advanced cardiomyopathies.

Departments of Anesthesia and Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.
Circulation Research (Impact Factor: 11.86). 02/2011; 108(7):857-61. DOI: 10.1161/CIRCRESAHA.111.241380
Source: PubMed

ABSTRACT Two categories of cardiac stem cells (CSCs) with predominantly myogenic (mCSC) and vasculogenic (vCSC) properties have been characterized in the human heart. However, it is unknown whether functionally competent CSCs of both classes are present in the myocardium of patients affected by end-stage cardiac failure, and whether these cells can be harvested from relatively small myocardial samples.
To establish whether a clinically relevant number of mCSCs and vCSCs can be isolated and expanded from endomyocardial biopsies of patients undergoing cardiac transplantation or left ventricular assist device implantation.
Endomyocardial biopsies were collected with a bioptome from the right side of the septum of explanted hearts or the apical LV core at the time of left ventricular assist device implantation. Two to 5 biopsies from each patient were enzymatically dissociated, and, after expansion, cells were sorted for c-kit (mCSCs) or c-kit and KDR (vCSCs) and characterized. mCSCs and vCSCs constituted 97% and 3% of the c-kit population, respectively. Population doubling time averaged 27 hours in mCSCs and vCSCs; 5×10(6) mCSCs and vCSCs were obtained in 28 and 41 days, respectively. Both CSC classes possessed significant growth reserve as documented by high telomerase activity and relatively long telomeres. mCSCs formed mostly cardiomyocytes, and vCSCs endothelial and smooth muscle cells.
The growth properties of mCSCs and vCSCs isolated from endomyocardial biopsies from patients with advanced heart failure were comparable to those obtained previously from larger myocardial samples of patients undergoing elective cardiac surgery.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Cardiac c-Kit+ cells isolated from cardiac explant-derived cells modestly improve cardiac functions after myocardial infarction; however, their full potential has not yet been realized. For instance, the majority of potential candidates for cell therapy suffer from chronic heart failure (CHF), and it is unclear how this disease affects the explant-derived progenitor cells. Therefore, the objective of this study was to determine the effect of CHF on the number and phenotype of cardiac explant c-Kit+ progenitors and elucidate mechanisms of their regulation. Myocardial infarction was created by left anterior descending coronary artery occlusion. Sham-operated animals were used as a control group. CHF-developed infarcted animals were selected on the basis of left ventricle end-diastolic pressure ≥20 mm Hg and scar size ≥30%. Here, we found that CHF atrial explants produced less c-Kit+ cells than sham explants. CHF-derived c-Kit+ cells exhibited upregulated transforming growth factor-β (TGF-β) signaling, increased level of epithelial to mesenchymal transition markers, and diminished expression of pluripotency markers compared with shams. We show that intervention with TGF-β signaling by inhibiting TGF-β receptor type I or Smad 2/3 using small-molecule inhibitors improved c-Kit+ cell yield, attenuated epithelial to mesenchymal transition markers, stimulated the pluripotency marker Nanog, and improved efficiency of c-Kit+ cell differentiation toward cardiomyocyte-like cells in vitro. Taken together, our findings suggest that TGF-β inhibition positively modulates c-Kit+ cell phenotype and function in vitro, and this strategy may be considered in optimizing cardiac progenitor function and cell expansion protocols for clinical application.
    Journal of the American Heart Association. 01/2013; 2(5):e000317.
  • [Show abstract] [Hide abstract]
    ABSTRACT: Sinus nodal cells can generate a diastolic or "pacemaker" depolarization at the end of an action potential driving the membrane potential slowly up to the threshold for firing the next action potential. It has been proved that adult cardiac stem cells (CSCs) can differentiate into sinus nodal cells by demethylating agent. However, there is no report about adult CSCs-derived sinus nodal cells with pacemaker current (the funny current, I f). In this study, we isolated the mouse adult CSCs from mouse hearts by the method of tissue explants adherence. The expression of c-kit protein indicated the isolation of CSCs. Then we co-cultured mouse CSCs with mouse sinus node tissue to induce the differentiation of these CSCs into sinus node-like cells, which was proved by identifying the enhanced expression of marker proteins cTnI, cTnT and α-Actinin with Immunofluorescence staining. At the same time, with whole-cell patch-clamp we detected the I f current, which can be blocked by CsCl, in these differentiated cells. In conclusion, by confirming specific I f current in the induced node-like cells, our work shows a method inducing differentiation of CSCs into sinus node-like cells, which can provide helpful information for the further research on sick sinus syndrome.
    International journal of clinical and experimental pathology. 01/2014; 7(5):1868-79.
  • [Show abstract] [Hide abstract]
    ABSTRACT: Despite significant therapeutic advances, the prognosis of patients with heart failure (HF) remains poor, and current therapeutic approaches are palliative in the sense that they do not address the underlying problem of the loss of cardiac tissue. Stem cell-based therapies have the potential to fundamentally transform the treatment of HF by achieving what would have been unthinkable only a few years ago-myocardial regeneration. For the first time since cardiac transplantation, a therapy is being developed to eliminate the underlying cause of HF, not just to achieve damage control. Since the initial report of cell therapy (skeletal myoblasts) in HF in 1998, research has proceeded at lightning speed, and numerous preclinical and clinical studies have been performed that support the ability of various stem cell populations to improve cardiac function and reduce infarct size in both ischemic and nonischemic cardiomyopathy. Nevertheless, we are still at the dawn of this therapeutic revolution. Many important issues (eg, mechanism(s) of action of stem cells, long-term engraftment, optimal cell type(s), and dose, route, and frequency of cell administration) remain to be resolved, and no cell therapy has been conclusively shown to be effective. The purpose of this article is to critically review the large body of work performed with respect to the use of stem/progenitor cells in HF, both at the experimental and clinical levels, and to discuss current controversies, unresolved issues, challenges, and future directions. The review focuses specifically on chronic HF; other settings (eg, acute myocardial infarction, refractory angina) are not discussed.
    Circulation Research 08/2013; 113(6):810-34. · 11.86 Impact Factor

Full-text (2 Sources)

Available from
May 16, 2014