Mucosal Gene Expression of Cell Adhesion Molecules, Chemokines, and Chemokine Receptors in Patients With Inflammatory Bowel Disease Before and After Infliximab Treatment

Department of Gastroenterology, University Hospital Gasthuisberg, Leuven, Belgium.
The American Journal of Gastroenterology (Impact Factor: 9.21). 02/2011; 106(4):748-61. DOI: 10.1038/ajg.2011.27
Source: PubMed

ABSTRACT Inflammatory bowel disease (IBD) is characterized by a continuous influx of leukocytes into the gut wall. This migration is regulated by cell adhesion molecules (CAMs), and selective antimigration therapies have been developed. This study investigated the effect of infliximab therapy on the mucosal gene expression of CAMs in IBD.
Mucosal gene expression of 69 leukocyte/endothelial CAMs and E-cadherin was investigated in 61 IBD patients before and after first infliximab infusion and in 12 normal controls, using Affymetrix gene expression microarrays. Quantitative reverse transcriptase-PCR (qRT-PCR), immunohistochemistry, and western blotting were used to confirm the microarray data.
When compared with control colons, the colonic mucosal gene expression of most leukocyte/endothelial adhesion molecules was upregulated and E-cadherin gene expression was downregulated in active colonic IBD (IBDc) before therapy, with no significant colonic gene expression differences between ulcerative colitis and colonic Crohn's disease. Infliximab therapy restored the upregulations of leukocyte CAMs in IBDc responders to infliximab that paralleled the disappearance of the inflammatory cells from the colonic lamina propria. Also, the colonic gene expression of endothelial CAMs and of most chemokines/chemokine receptors returned to normal after therapy in IBDc responders, and only CCL20 and CXCL1-2 expression remained increased after therapy in IBDc responders vs. control colons. When compared with control ileums, the ileal gene expression of MADCAM1, THY1, PECAM1, CCL28, CXCL1, -2, -5, -6, and -11, and IL8 was increased and CD58 expression was decreased in active ileal Crohn's disease (CDi) before therapy, and none of the genes remained dysregulated after therapy in CDi responders vs. control ileums. This microarray study identified a number of interesting targets for antiadhesion therapy including PECAM1, IL8, and CCL20, besides the currently studied α4β7 integrin-MADCAM1 axis.
Our data demonstrate that many leukocyte/endothelial CAMs and chemokines/chemokine receptors are upregulated in inflamed IBD mucosa. Controlling the inflammation with infliximab restores most of these dysregulations in IBD. These results show that at least part of the mechanism of anti-tumor necrosis factor-α therapy goes through downregulation of certain adhesion molecules.

1 Follower
  • [Show abstract] [Hide abstract]
    ABSTRACT: The ability to measure the expression of proinflammatory cytokines from intestinal biopsies in patients with Crohn's disease in an accurate and reproducible way is critical for proof-of-concept and mechanism-of-action trials; however, the number of biopsies from a segment of the ileum or colon required to yield reproducible results has not been rigorously evaluated. We examined intestinal biopsies from patients with Crohn's disease to validate methods for detecting changes in inflammatory gene expression. To evaluate the reproducibility of gene expression measurements, intestinal biopsies were obtained from designated segments from 6 healthy controls, 6 patients with active Crohn's disease, and 6 patients with inactive Crohn's disease. Disease activity was based on the simple endoscopic score for Crohn's disease. Expression of 7 proinflammatory genes was measured from each biopsy using quantitative polymerase chain reaction. Using a linear mixed effects model, the power to detect transcriptional changes corresponding to active and inactive Crohn's disease was calculated. Total simple endoscopic score for Crohn's disease score corresponds with expression of most inflammatory biomarkers. For most genes, 2 to 5 biopsies are needed to reduce sampling error to <25% for most genes. To measure changes in mRNA expression corresponding to active versus inactive Crohn's disease, 1 to 2 intestinal biopsies from 3 patients before and after treatment are needed to yield power of at least 80%. Measuring proinflammatory gene expression from mucosal biopsies from patients with Crohn's disease is practicable and provides objective biomarkers that can be used in proof-of-concept and mechanism-of-action trials to assess response to therapy.
    Inflammatory Bowel Diseases 12/2014; DOI:10.1097/MIB.0000000000000264 · 5.48 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Inflammatory Bowel Disease (IBD), mainly comprising Crohn's disease (CD) and ulcerative colitis (UC), is a chronic condition that primarily affects the intestine and is characterized by leukocytic infiltration. Blocking the migration of leukocytes from the circulation is therefore a reasonable therapeutic goal. Recent clinical trials using this approach have shown promise, with the monoclonal antibody to α4β7 integrin, vedolizumab, and previously with the monoclonal antibody to the α4 subunit, natalizumab. Directly targeting the subset of α4β7 expressing cells that co-express CC chemokine receptor 9 (CCR9), using the orally administered antagonist, CCX282-B, also known as vercirnon, has also been evaluated in Phase II and III trials that have produced mixed results. Although CCX282-B showed efficacy in inducing response in active CD in early studies, this was not confirmed in a Phase III study. CCX282-B was also more effective than placebo in maintaining remission, and this result has yet to be confirmed in Phase III. The efficacy of blocking CCR9 in UC, where vedolizumab was effective, has not been tested. The prospect of targeting CCR9 in IBD remains attractive. Much of the local accumulation of inflammatory cells in the intestine arises from migration rather than local proliferation and genetic and pharmacological targeting of CCR9 or its ligand in preclinical models that mimic UC and CD ameliorate inflammation in some cases. Furthermore, binding of chemokine ligands to receptor is a critical step in activating integrin binding, so there is a potential for synergistic action between integrin and chemokine antagonists. CCR9 is expressed on a smaller proportion of circulating cells than α4β7 integrin, which may offer greater specificity of effect, particularly in long term use. Furthermore, while α4β7 is widely expressed on T and B cell subsets, CCR9 is mainly expressed on effector memory Th1 cells. Indications for the use of intestine-specific integrin and chemokine receptor targeting may also extend beyond IBD, to include, for example, postoperative ileus, and primary sclerosing cholangitis.
    Clinical and Experimental Gastroenterology 01/2015; 8:119. DOI:10.2147/CEG.S48305
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Phytogenic compounds with antioxidant and anti-inflammatory properties are currently discussed as promising complementary agents in prevention and treatment of inflammatory bowel disease (IBD). Our study aimed to evaluate possible protective and curative effects of broccoli extract (BE) and of the essential oils of turmeric (Cuo), thyme (To), and rosemary (Ro) in a rat model with a mild dextran sulphate sodium- (DSS-) induced colitis. Therefore Wistar rats were fed a diet without an additive (Con) or diets with the addition of BE, Cuo, To, and Ro during the whole experiment. Pretreatment with Ro, Cuo, and To increased the expression of the tight junction protein Cldn3. All additives reduced mRNA of VCAM-1 which plays a crucial role in the first state of inflammatory response. Only Ro pretreatment affected the expression of the antioxidant enzymes HO1, GPx2, and of glutathione-S-transferases. All additives counteracted the DSS-induced rise in COX2 and VCAM-1 expression. Colonic IL-10 was increased by Cuo, To, and Ro. During the recovery phase DSS pretreatment increased NF κ B, VCAM-1, and MCP-1: This response was counter-regulated by all additives. We conclude that the phytogenic additives tested have a promising anti-inflammatory potential in vivo and a particular role in the prevention of IBD.
    02/2013; 2013:710856. DOI:10.1155/2013/710856