Effect of ACL Transection on Internal Tibial Rotation in an in Vitro Simulated Pivot Landing

Biomechanics Research Laboratory, Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109-2125, USA.
The Journal of Bone and Joint Surgery (Impact Factor: 4.31). 02/2011; 93(4):372-80. DOI: 10.2106/JBJS.J.00262
Source: PubMed

ABSTRACT The amount of resistance provided by the ACL (anterior cruciate ligament) to axial tibial rotation remains controversial. The goal of this study was to test the primary hypotheses that ACL transection would not significantly affect tibial rotation under the large impulsive loads associated with a simulated pivot landing but would increase anterior tibial translation.
Twelve cadaveric knees (mean age of donors [and standard deviation] at the time of death, 65.0 ± 10.5 years) were mounted in a custom testing apparatus to simulate a single-leg pivot landing. A compound impulsive load was applied to the distal part of the tibia with compression (∼800 N), flexion moment (∼40 N-m), and axial tibial torque (∼17 N-m) in the presence of five trans-knee muscle forces. A differential variable reluctance transducer mounted on the anteromedial aspect of the ACL measured relative strain. With the knee initially in 15° of flexion, and after five combined compression and flexion moment (baseline) loading trials, six trials were conducted with the addition of either internal or external tibial torque (internal or external loading), and then six baseline trials were performed. The ACL was then sectioned, six baseline trials were repeated, and then six trials of either the internal or the external loading condition, whichever had initially resulted in the larger relative ACL strain, were carried out. Tibiofemoral kinematics were measured optoelectronically. The results were analyzed with a nonparametric Wilcoxon signed-rank test.
Following ACL transection, the increase in the normalized internal tibial rotation was significant but small (0.7°/N-m ± 0.3°/N-m to 0.8°/N-m ± 0.3°/N-m, p = 0.012), while anterior tibial translation increased significantly (3.8 ± 2.9 to 7.0 ± 2.9 mm, p = 0.017).
ACL transection leads to a small increase in internal tibial rotation, equivalent to a 13% decrease in the dynamic rotational resistance, under the large forces associated with a simulated pivot landing, but it leads to a significant increase in anterior tibial translation.

Download full-text


Available from: Jennifer L Kreinbrink, Jun 29, 2015
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Investigators use in vitro joint simulations to invasively study the biomechanical behaviors of the anterior cruciate ligament. The aims of these simulations are to replicate physiologic conditions, but multiple mechanisms can be used to drive in vitro motions, which may influence biomechanical outcomes. The objective of this review was to examine, summarize, and compare biomechanical evidence related to anterior cruciate ligament function from in vitro simulations of knee motion. A systematic review was conducted (2004 to 2013) in Scopus, PubMed/Medline, and SPORTDiscus to identify peer-reviewed studies that reported kinematic and kinetic outcomes from in vitro simulations of physiologic or clinical tasks at the knee. Inclusion criteria for relevant studies were articles published in English that reported on whole-ligament anterior cruciate ligament mechanics during the in vitro simulation of physiologic or clinical motions on cadaveric knees that were unaltered outside of the anterior-cruciate-ligament-intact, -deficient, and -reconstructed conditions. A meta-analysis was performed to synthesize biomechanical differences between the anterior-cruciate-ligament-intact and reconstructed conditions. 77 studies met our inclusion/exclusion criteria and were reviewed. Combined joint rotations have the greatest impact on anterior cruciate ligament loads, but the magnitude by which individual kinematic degrees of freedom contribute to ligament loading during in vitro simulations is technique-dependent. Biomechanical data collected in prospective, longitudinal studies corresponds better with robotic-manipulator simulations than mechanical-impact simulations. Robotic simulation indicated that the ability to restore intact anterior cruciate ligament mechanics with anterior cruciate ligament reconstructions was dependent on loading condition and degree of freedom examined. Copyright © 2014 Elsevier Ltd. All rights reserved.
    Clinical biomechanics (Bristol, Avon) 01/2015; 30(1):1-13. DOI:10.1016/j.clinbiomech.2014.12.006 · 1.88 Impact Factor
  • Source
    Theoretical Biomechanics, 11/2011; , ISBN: 978-953-307-851-9
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The study was performed to characterize the influence of tibial tuberosity realignment on the pressure applied to cartilage on the patella in the intact condition and with lesions on the lateral and medial facets. Ten knees were loaded in vitro through the quadriceps (586 N) and hamstrings (200 N) at 40°, 60°, and 80° of flexion while measuring patellofemoral contact pressures with a pressure sensor. The tibial tuberosity was positioned 5 mm lateral of the normal position to represent lateral malalignment, 5 mm medial of the normal position to represent tuberosity medialization, and 10 mm anterior of the medial position to represent tuberosity anteromedialization. The knees were tested with intact cartilage, with a 12-mm-diameter lesion created within the lateral patellar cartilage, and with the lateral lesion repaired with silicone combined with a medial lesion. A repeated measures ANOVA and post hoc tests were used to identify significant (P < 0.05) differences in the maximum lateral and medial pressure between the tuberosity positions. Tuberosity medialization and anteromedialization significantly decreased the maximum lateral pressure by approximately 15% at 60° and 80° for intact cartilage and cartilage with a lateral lesion. Tuberosity medialization significantly increased the maximum medial pressure for intact cartilage at 80°, but the maximum medial pressure did not exceed the maximum lateral pressure for any testing condition. The results indicate that medializing the tibial tuberosity by 10 mm reduces the pressure applied to lateral patellar cartilage for intact cartilage and cartilage with lateral lesions, but does not overload medial cartilage.
    Knee Surgery Sports Traumatology Arthroscopy 12/2011; 20(10):2054-61. DOI:10.1007/s00167-011-1802-8 · 2.84 Impact Factor