Article

Impact of the experimental removal of lizards on Lyme disease risk.

Department of Integrative Biology, University of California, 3060 Valley Life Sciences Building, Berkeley, CA 94720-3140, USA.
Proceedings of the Royal Society B: Biological Sciences (Impact Factor: 5.29). 02/2011; 278(1720):2970-8. DOI: 10.1098/rspb.2010.2402
Source: PubMed

ABSTRACT The distribution of vector meals in the host community is an important element of understanding and predicting vector-borne disease risk. Lizards (such as the western fence lizard; Sceloporus occidentalis) play a unique role in Lyme disease ecology in the far-western United States. Lizards rather than mammals serve as the blood meal hosts for a large fraction of larval and nymphal western black-legged ticks (Ixodes pacificus--the vector for Lyme disease in that region) but are not competent reservoirs for the pathogen, Borrelia burgdorferi. Prior studies have suggested that the net effect of lizards is to reduce risk of human exposure to Lyme disease, a hypothesis that we tested experimentally. Following experimental removal of lizards, we documented incomplete host switching by larval ticks (5.19%) from lizards to other hosts. Larval tick burdens increased on woodrats, a competent reservoir, but not on deer mice, a less competent pathogen reservoir. However, most larvae failed to find an alternate host. This resulted in significantly lower densities of nymphal ticks the following year. Unexpectedly, the removal of reservoir-incompetent lizards did not cause an increase in nymphal tick infection prevalence. The net result of lizard removal was a decrease in the density of infected nymphal ticks, and therefore a decreased risk to humans of Lyme disease. Our results indicate that an incompetent reservoir for a pathogen may, in fact, increase disease risk through the maintenance of higher vector density and therefore, higher density of infected vectors.

Download full-text

Full-text

Available from: Richard Ostfeld, Jun 27, 2015
0 Followers
 · 
154 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Control of human infectious disease has been promoted as a valuable ecosystem service arising from the conservation of biodiversity. There are two commonly discussed mechanisms by which biodiversity loss could increase rates of infectious disease in a landscape. First, loss of competitors or predators could facilitate an increase in the abundance of competent reservoir hosts. Second, biodiversity loss could disproportionately affect non-competent, or less competent reservoir hosts, which would otherwise interfere with pathogen transmission to human populations by, for example, wasting the bites of infected vectors. A negative association between biodiversity and disease risk, sometimes called the "dilution effect hypothesis," has been supported for a few disease agents, suggests an exciting win-win outcome for the environment and society, and has become a pervasive topic in the disease ecology literature. Case studies have been assembled to argue that the dilution effect is general across disease agents. Less touted are examples in which elevated biodiversity does not affect or increases infectious disease risk for pathogens of public health concern. In order to assess the likely generality of the dilution effect, we review the association between biodiversity and public health across a broad variety of human disease agents. Overall, we hypothesize that conditions for the dilution effect are unlikely to be met for most important diseases of humans. Biodiversity probably has little net effect on most human infectious diseases but, when it does have an effect, observation and basic logic suggest that biodiversity will be more likely to increase than to decrease infectious disease risk.
    Ecology 04/2014; 95(4):817-32. DOI:10.1890/13-1041.1 · 5.00 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: 1. Invasions can impact on parasite communities through both the introduction of exotic parasite species and effects of invading hosts on native parasite dynamics. However, our understanding of the factors that influence the invasive process and mediate impacts on native hosts and parasites is limited. 2. Using models of host—parasite dynamics as a framework, we explore how both the probability of spread for an exotic parasite and impacts of introduced species on native parasite dynamics depend on key parameters related to rates of encounter, transmission, mortality and recovery. We examine how invasions may interact with the diverse range of underlying biological mechanisms that can affect these rates. We specifically highlight the potential role of interactions between parasites, which has largely been ignored. 3. For introduced parasites, high abundance of competent hosts and vectors within native communities can greatly facilitate spread. Introduced host species can cause amplification or dilution effects for native parasite dynamics, with the direction and magnitude of the effect determined by how the invasion influences the competency and abundance or relative abundance of the host community (community capacity). 4. Invasions by exotic parasites and changes to endemic parasite dynamics following invasions may reflect numerical and functional processes in multihost single-parasite systems (e.g. influence of host and vector community structure on encounter rates). However, as co-infection can influence factors such as susceptibility and infection length, effects may also be mediated by within-host interactions between parasites. The ultimate effect of an invasion will depend on the community-wide summed direct and indirect impacts. 5. Future studies should aim to further elucidate the key processes influencing disease dynamics in multihost (and multivector) communities, thereby informing predictions of how invasive host and parasite species and changes in biodiversity will influence disease risk. Theoretical studies should incorporate host interspecific competition and relax assumptions regarding the relationship between intra- and interspecific contact rates and density. Empirical and experimental studies should not only quantify the relative importance of host (and vector) density and diversity, but also consider other community interactions such as those between parasites.
    Functional Ecology 12/2012; 26(6):1288-1299. DOI:10.2307/23326824 · 4.86 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Numerous factors impact the dynamics of host-parasite relationships, such as host sex, hormonal state, reproductive condition, host health, and behavior. In particular, males from a variety of taxa frequently carry heavier parasite burdens than females, particularly during breeding season when testosterone concentrations are elevated. Using western fence lizards (Sceloporus occidentalis), we tested the hypothesis that high circulating testosterone concentrations in male lizards induce high tick and mite loads. We implanted male lizards with either testosterone or control implants in the field during the spring, when tick and mite loads are highest. One month later, testosterone-implanted males had significantly higher tick loads, but lower mite loads, than control males. These results suggest that testosterone differentially impacts ectoparasitic acarine burdens. Testosterone may modulate aspects of lizard physiology and behavior that enhance or diminish parasitism by certain acarines during periods of peak reproductive effort.
    Journal of Experimental Zoology Part A Ecological Genetics and Physiology 08/2012; 317(7):447-54. DOI:10.1002/jez.1737 · 1.35 Impact Factor