Article

ODVBA: Optimally-Discriminative Voxel-Based Analysis

Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104, USA.
IEEE transactions on medical imaging 02/2011; 30(8):1441-54. DOI: 10.1109/TMI.2011.2114362
Source: PubMed

ABSTRACT Gaussian smoothing of images prior to applying voxel-based statistics is an important step in voxel-based analysis and statistical parametric mapping (VBA-SPM) and is used to account for registration errors, to Gaussianize the data and to integrate imaging signals from a region around each voxel. However, it has also become a limitation of VBA-SPM based methods, since it is often chosen empirically and lacks spatial adaptivity to the shape and spatial extent of the region of interest, such as a region of atrophy or functional activity. In this paper, we propose a new framework, named optimally-discriminative voxel-based analysis (ODVBA), for determining the optimal spatially adaptive smoothing of images, followed by applying voxel-based group analysis. In ODVBA, nonnegative discriminative projection is applied regionally to get the direction that best discriminates between two groups, e.g., patients and controls; this direction is equivalent to local filtering by an optimal kernel whose coefficients define the optimally discriminative direction. By considering all the neighborhoods that contain a given voxel, we then compose this information to produce the statistic for each voxel. Finally, permutation tests are used to obtain a statistical parametric map of group differences. ODVBA has been evaluated using simulated data in which the ground truth is known and with data from an Alzheimer's disease (AD) study. The experimental results have shown that the proposed ODVBA can precisely describe the shape and location of structural abnormality.

Download full-text

Full-text

Available from: Tianhao Zhang, Oct 06, 2014
0 Followers
  • Source
    • "While the searchlight mapping approach is very attractive , it only explores local relationships and does not account for long distance spatially distributed patterns. A more recent method that has some similarities with searchlight is the optimally-discriminative voxel-based analysis (ODVBA) [20]. ODVBA is a framework proposed to determine the optimal spatially adaptive smoothing. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Feature selection (FS) methods play two important roles in the context of neuroimaging based classification: potentially increase classification accuracy by eliminating irrelevant features from the model and facilitate interpretation by identifying sets of meaningful features that best discriminate the classes. Although the development of FS techniques specifically tuned for neuroimaging data is an active area of research, up to date most of the studies have focused on finding a subset of features that maximizes accuracy. However, maximizing accuracy does not guarantee reliable interpretation as similar accuracies can be obtained from distinct sets of features. In the current paper we propose a new approach for selecting features: SCoRS (survival count on random subsamples) based on a recently proposed Stability Selection theory. SCoRS relies on the idea of choosing relevant features that are stable under data perturbation. Data are perturbed by iteratively sub-sampling both features (subspaces) and examples. We demonstrate the potential of the proposed method in a clinical application to classify depressed patients versus healthy individuals based on functional magnetic resonance imaging data acquired during visualization of happy faces.
    IEEE Transactions on Medical Imaging 01/2014; 33(1):85-98. DOI:10.1109/TMI.2013.2281398 · 3.80 Impact Factor
  • Source
    • "denotes that x is the i th element in N, and δ N denotes the discrimination degree [9]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: This significantly extends Multi-Voxel Pattern Analysis (MVPA) methods, such as the Searchlight and related methods, by building on an approach that was recently proposed for structural brain images, and was named Optimally-Discriminative Voxel-Based Analysis (ODVBA), which uses machine learning models to determine the optimal anisotropic filtering of images that enhances group differences. Precise spatial maps of activation are computed by tallying the weights of each voxel to all of the neighborhood in which it belongs, and significance maps are obtained via permutation testing. We adapt this idea to both single and multi-subject fMRI analysis. Both simulated data and real data from 12 adolescent subjects who completed a standard working memory task demonstrated the use of ODVBA in fMRI improves accuracy and spatial specificity of activation detection over Searchlight.
    Pattern Recognition in NeuroImaging (PRNI), 2012 International Workshop on; 07/2012
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The Alzheimer's Disease Neuroimaging Initiative (ADNI) is an ongoing, longitudinal, multicenter study designed to develop clinical, imaging, genetic, and biochemical biomarkers for the early detection and tracking of Alzheimer's disease (AD). The initial study, ADNI-1, enrolled 400 subjects with early mild cognitive impairment (MCI), 200 with early AD, and 200 cognitively normal elderly controls. ADNI-1 was extended by a 2-year Grand Opportunities grant in 2009 and by a competitive renewal, ADNI-2, which enrolled an additional 550 participants and will run until 2015. This article reviews all papers published since the inception of the initiative and summarizes the results to the end of 2013. The major accomplishments of ADNI have been as follows: (1) the development of standardized methods for clinical tests, magnetic resonance imaging (MRI), positron emission tomography (PET), and cerebrospinal fluid (CSF) biomarkers in a multicenter setting; (2) elucidation of the patterns and rates of change of imaging and CSF biomarker measurements in control subjects, MCI patients, and AD patients. CSF biomarkers are largely consistent with disease trajectories predicted by β-amyloid cascade (Hardy, J Alzheimer's Dis 2006;9(Suppl 3):151-3) and tau-mediated neurodegeneration hypotheses for AD, whereas brain atrophy and hypometabolism levels show predicted patterns but exhibit differing rates of change depending on region and disease severity; (3) the assessment of alternative methods of diagnostic categorization. Currently, the best classifiers select and combine optimum features from multiple modalities, including MRI, [(18)F]-fluorodeoxyglucose-PET, amyloid PET, CSF biomarkers, and clinical tests; (4) the development of blood biomarkers for AD as potentially noninvasive and low-cost alternatives to CSF biomarkers for AD diagnosis and the assessment of α-syn as an additional biomarker; (5) the development of methods for the early detection of AD. CSF biomarkers, β-amyloid 42 and tau, as well as amyloid PET may reflect the earliest steps in AD pathology in mildly symptomatic or even nonsymptomatic subjects and are leading candidates for the detection of AD in its preclinical stages; (6) the improvement of clinical trial efficiency through the identification of subjects most likely to undergo imminent future clinical decline and the use of more sensitive outcome measures to reduce sample sizes. Multimodal methods incorporating APOE status and longitudinal MRI proved most highly predictive of future decline. Refinements of clinical tests used as outcome measures such as clinical dementia rating-sum of boxes further reduced sample sizes; (7) the pioneering of genome-wide association studies that leverage quantitative imaging and biomarker phenotypes, including longitudinal data, to confirm recently identified loci, CR1, CLU, and PICALM and to identify novel AD risk loci; (8) worldwide impact through the establishment of ADNI-like programs in Japan, Australia, Argentina, Taiwan, China, Korea, Europe, and Italy; (9) understanding the biology and pathobiology of normal aging, MCI, and AD through integration of ADNI biomarker and clinical data to stimulate research that will resolve controversies about competing hypotheses on the etiopathogenesis of AD, thereby advancing efforts to find disease-modifying drugs for AD; and (10) the establishment of infrastructure to allow sharing of all raw and processed data without embargo to interested scientific investigators throughout the world. Published by Elsevier Inc.
    Alzheimer's & dementia: the journal of the Alzheimer's Association 10/2011; 8(1 Suppl):S1-68. DOI:10.1016/j.jalz.2011.09.172 · 17.47 Impact Factor
Show more