Article

Erythropoietin and hypoxia increase erythropoietin receptor and nitric oxide levels in lung microvascular endothelial cells

Institute of Endocrinology, Diabetes and Metabolic Diseases, Clinical Center of Serbia, Belgrade, Serbia.
Cytokine (Impact Factor: 2.87). 02/2011; 54(2):129-35. DOI: 10.1016/j.cyto.2011.01.015
Source: PubMed

ABSTRACT Acute lung exposure to low oxygen results in pulmonary vasoconstriction and redistribution of blood flow. We used human microvascular endothelial cells from lung (HMVEC-L) to study the acute response to oxygen stress. We observed that hypoxia and erythropoietin (EPO) increased erythropoietin receptor (EPOR) gene expression and protein level in HMVEC-L. In addition, EPO dose- and time-dependently stimulated nitric oxide (NO) production. This NO stimulation was evident despite hypoxia induced reduction of endothelial NO synthase (eNOS) gene expression. Western blot of phospho-eNOS (serine1177) and eNOS and was significantly induced by hypoxia but not after EPO treatment. However, iNOS increased at hypoxia and with EPO stimulation compared to normal oxygen tension. In accordance with our previous results of NO induction by EPO at low oxygen tension in human umbilical vein endothelial cells and bone marrow endothelial cells, these results provide further evidence in HMVEC-L for EPO regulation of NO production to modify the effects of hypoxia and cause compensatory vasoconstriction.

Download full-text

Full-text

Available from: Barbora Piknova, Aug 30, 2015
1 Follower
 · 
144 Views
  • Source
    • "Despite this, Beleslin-Čokić et al. have shown that chronic hypoxia (48 hours) actually causes an increase in NO production within human PAECs [19]. However, consistent with the aforementioned data, they did show a decrease in eNOS. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Hypoxic pulmonary vasoconstriction is the elegant theory put forward more than six decades ago to explain regional variations in perfusion within the lung in certain animal species in response to localised restrictions in oxygenation. Although considerable progress has been made to describe the phenomenon at the macroscopic level and explain it at the microscopic level, we are far from a universal agreement about the process in humans. This review attempts to highlight some of the important evidence bases of hypoxic pulmonary vasoconstriction in humans and the significant gaps in our knowledge that would need bridging.
    08/2013; 2013:623684. DOI:10.1155/2013/623684
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Erythropoietin is known as the requisite cytokine for red blood cell production. Its receptor, expressed at a high level on erythroid progenitor/precursor cells, is also found on endothelial, neural, and other cell types. Erythropoietin and erythropoietin receptor expression in the developing and adult brain suggest their possible involvement in neurodevelopment and neuroprotection. During ischemic stress, erythropoietin, which is hypoxia inducible, can contribute to brain homeostasis by increasing red blood cell production to increase the blood oxygen carrying capacity, stimulate nitric oxide production to modulate blood flow and contribute to the neurovascular response, or act directly on neural cells to provide neuroprotection as demonstrated in culture and animal models. Clinical studies of erythropoietin treatment in stroke and other diseases provide insight on safety and potential adverse effects and underscore the potential pleiotropic activity of erythropoietin. Herein, we summarize the roles of EPO and its receptor in the developing and adult brain during health and disease, providing first a brief overview of the well-established EPO biology and signaling, its hypoxic regulation, and role in erythropoiesis.
    02/2012; 2012(22):953264. DOI:10.1155/2012/953264
  • Source
    Hematology - Science and Practice, 03/2012; , ISBN: 978-953-51-0174-1
Show more