Article

Erythropoietin and hypoxia increase erythropoietin receptor and nitric oxide levels in lung microvascular endothelial cells

Institute of Endocrinology, Diabetes and Metabolic Diseases, Clinical Center of Serbia, Belgrade, Serbia.
Cytokine (Impact Factor: 2.87). 02/2011; 54(2):129-35. DOI: 10.1016/j.cyto.2011.01.015
Source: PubMed

ABSTRACT Acute lung exposure to low oxygen results in pulmonary vasoconstriction and redistribution of blood flow. We used human microvascular endothelial cells from lung (HMVEC-L) to study the acute response to oxygen stress. We observed that hypoxia and erythropoietin (EPO) increased erythropoietin receptor (EPOR) gene expression and protein level in HMVEC-L. In addition, EPO dose- and time-dependently stimulated nitric oxide (NO) production. This NO stimulation was evident despite hypoxia induced reduction of endothelial NO synthase (eNOS) gene expression. Western blot of phospho-eNOS (serine1177) and eNOS and was significantly induced by hypoxia but not after EPO treatment. However, iNOS increased at hypoxia and with EPO stimulation compared to normal oxygen tension. In accordance with our previous results of NO induction by EPO at low oxygen tension in human umbilical vein endothelial cells and bone marrow endothelial cells, these results provide further evidence in HMVEC-L for EPO regulation of NO production to modify the effects of hypoxia and cause compensatory vasoconstriction.

Download full-text

Full-text

Available from: Barbora Piknova, Jul 07, 2015
1 Follower
 · 
138 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Erythropoietin is known as the requisite cytokine for red blood cell production. Its receptor, expressed at a high level on erythroid progenitor/precursor cells, is also found on endothelial, neural, and other cell types. Erythropoietin and erythropoietin receptor expression in the developing and adult brain suggest their possible involvement in neurodevelopment and neuroprotection. During ischemic stress, erythropoietin, which is hypoxia inducible, can contribute to brain homeostasis by increasing red blood cell production to increase the blood oxygen carrying capacity, stimulate nitric oxide production to modulate blood flow and contribute to the neurovascular response, or act directly on neural cells to provide neuroprotection as demonstrated in culture and animal models. Clinical studies of erythropoietin treatment in stroke and other diseases provide insight on safety and potential adverse effects and underscore the potential pleiotropic activity of erythropoietin. Herein, we summarize the roles of EPO and its receptor in the developing and adult brain during health and disease, providing first a brief overview of the well-established EPO biology and signaling, its hypoxic regulation, and role in erythropoiesis.
    02/2012; 2012:953264. DOI:10.1155/2012/953264
  • Source
    Hematology - Science and Practice, 03/2012; , ISBN: 978-953-51-0174-1
  • [Show abstract] [Hide abstract]
    ABSTRACT: Recombinant human erythropoietin (rHuEPO) reduces serum insulin levels, increases insulin sensitivity, and reduces insulin resistance (IR). However, the mechanisms behind these effects are unclear. This study aimed to investigate the mechanism by which rHuEPO effects IR in 3T3L1 adipocytes. After treatment with different concentrations of rHuEPO, glucose consumption, and tumor necrosis factor (TNF-α), adiponectin, and leptin levels were assayed with a commercial enzyme-linked immunosorbent assays. Endogenous erythropoietin receptor (EPOR) expression was inhibited using small interfering RNA (siRNA). EPOR protein and mRNA expression was detected via immunofluorescence and real-time PCR analyses, respectively. The expression of pAKT/AKT and p-STAT5/STAT5 was determined via Western blot analysis. rHuEPO treatment improved glucose uptake, increased adiponectin levels, and reduced TNF-α and leptin levels in 3T3L1 adipocytes with dexamethasone-induced IR. Whereas EPOR protein and gene expression was absent in preadipocytes, it was observed in mature 3T3L1 adipocytes. However, the expression of EPOR in insulin resistant 3T3L1 adipocytes was significantly decreased (p<0.05). rHuEPO increased the expression of EPOR, and upregulated the expression of pAKT/AKT and pSTAT5/STAT5 in 3T3L1 adipocytes (p<0.05), which was blocked by siEPOR, the phosphatidylinositol-3-kinase (PI3K) inhibitor, LY294002, and a STAT5 inhibitor, respectively. In summary, rHuEPO reduced IR in adipocytes by increasing glucose uptake and improving the adipokine profile. rHuEPO-induced EPOR protein expression and subsequent induction of pAKT and pSTAT5 suggest that the EPO-EPOR system may play a role in glucose metabolism within adipocytes.
    Molecular and Cellular Endocrinology 01/2013; 367(1-2). DOI:10.1016/j.mce.2012.12.027 · 4.24 Impact Factor