Man M, Hupe M, Mackenzie D et al.A topical Chinese herbal mixture improves epidermal permeability barrier function in normal murine skin. Exp Dermatol 20:285-288

Dermatology Service, VAMC, and Department of Dermatology, University of California San Francisco, San Francisco, CA, USA Department of Dermatology, Yonsei University College of Medicine, Yongdong Severance Hospital, Seoul, Korea Department of Medicine, University of California San Francisco, San Francisco, CA, USA Dermatology, Hospital del Mar, UAB, Barcelone, Spain.
Experimental Dermatology (Impact Factor: 3.76). 03/2011; 20(3):285-8. DOI: 10.1111/j.1600-0625.2010.01205.x
Source: PubMed


Chinese herbal medicine (CHM) has been shown to have beneficial effects for both skin disorders with barrier abnormality and as skin care ingredients. Yet, how CHM exerts their benefits is unclear. As most, if not all, inflammatory dermatoses are accompanied by abnormal permeability barrier function, we assessed the effects of topical CHM extracts on epidermal permeability barrier function and their potential mechanisms. Topical CHM accelerated barrier recovery following acute barrier disruption. Epidermal lipid content and mRNA expression of fatty acid and ceramide synthetic enzymes increased following topical CHM treatment in addition to mRNA levels for the epidermal glucosylceramide transport protein, ATP-binding cassette A12. Likewise, CHM extract increased mRNA expression of antimicrobial peptides both in vivo and in vitro. These results demonstrate that the topical CHM extract enhances epidermal permeability barrier function, suggesting that topical CHM could provide an alternative regimen for the prevention/treatment of inflammatory dermatoses accompanied by barrier abnormalities.

7 Reads
  • Source
    • "It has been shown that topical applications of herbal extracts inhibit cutaneous inflammation and improve both the epidermal permeability barrier and the antimicrobial barrier function [1, 9, 32]. However, the active constituents of herbal medicines have not yet been well defined. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Herbal medicines have been used in preventing and treating skin disorders for centuries. It has been demonstrated that systemic administration of chrysanthemum extract exhibits anti-inflammatory properties. However, whether topical applications of apigenin, a constituent of chrysanthemum extract, influence cutaneous inflammation is still unclear. In the present study, we first tested whether topical applications of apigenin alleviate cutaneous inflammation in murine models of acute dermatitis. The murine models of acute allergic contact dermatitis and acute irritant contact dermatitis were established by topical application of oxazolone and phorbol 12-myristate 13-acetate (TPA), respectively. Inflammation was assessed in both dermatitis models by measuring ear thickness. Additionally, the effect of apigenin on stratum corneum function in a murine subacute allergic contact dermatitis model was assessed with an MPA5 physiology monitor. Our results demonstrate that topical applications of apigenin exhibit therapeutic effects in both acute irritant contact dermatitis and allergic contact dermatitis models. Moreover, in comparison with the vehicle treatment, topical apigenin treatment significantly reduced transepidermal water loss, lowered skin surface pH, and increased stratum corneum hydration in a subacute murine allergic contact dermatitis model. Together, these results suggest that topical application of apigenin could provide an alternative regimen for the treatment of dermatitis.
    Evidence-based Complementary and Alternative Medicine 11/2012; 2012(11):912028. DOI:10.1155/2012/912028 · 1.88 Impact Factor
  • Source
    • "Chinese herbal mixtures (CHM) had been often claimed beneficial in treatment of AD. A recent study had demonstrated that topical CHM accelerated barrier recovery following acute barrier disruption by increased epidermal lipid content and mRNA expression of fatty acid and ceramide synthetic enzymes, mRNA levels for the epidermal glucosylceramide transport protein, and mRNA expression of antimicrobial peptides both in vivo and in vitro [50]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Atopic dermatitis is a multifactorial, chronic relapsing, inflammatory disease, characterized by xerosis, eczematous lesions, and pruritus. The latter usually leads to an "itch-scratch" cycle that may compromise the epidermal barrier. Skin barrier abnormalities in atopic dermatitis may result from mutations in the gene encoding for filaggrin, which plays an important role in the formation of cornified cytosol. Barrier abnormalities render the skin more permeable to irritants, allergens, and microorganisms. Treatment of atopic dermatitis must be directed to control the itching, suppress the inflammation, and restore the skin barrier. Emollients, both creams and ointments, improve the barrier function of stratum corneum by providing it with water and lipids. Studies on atopic dermatitis and barrier repair treatment show that adequate lipid replacement therapy reduces the inflammation and restores epidermal function. Efforts directed to develop immunomodulators that interfere with cytokine-induced skin barrier dysfunction, provide a promising strategy for treatment of atopic dermatitis. Moreover, an impressive proliferation of more than 80 clinical studies focusing on topical treatments in atopic dermatitis led to growing expectations for better therapies.
    Dermatology Research and Practice 08/2012; 2012:923134. DOI:10.1155/2012/923134
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Previous studies have suggested that hexose molecules influence the stability of phospholipid bilayers. Therefore, the effects of topical application of all 12 stereoisomers of dextro-hexose on the epidermal barrier recovery rate after barrier disruption were evaluated. Immediately after tape stripping, 0.1 m aqueous solution of each hexose was applied on hairless mouse skin. Among the eight dextro-aldohexoses, topical application of altose, idose, mannose and talose accelerated the barrier recovery, while allose, galactose, glucose and gulose had no effect. Among the four dextro-ketohexoses, psicose, fructose, sorbose and tagatose all accelerated the barrier recovery. As the effects of hexoses on the barrier recovery rate appeared within 1 h, the mechanism is unlikely to be genomic. Instead, these hexoses may influence phase transition of the lipid bilayers of lamellar bodies and cell membrane, a crucial step in epidermal permeability barrier homeostasis.
    Experimental Dermatology 06/2011; 20(11):943-4. DOI:10.1111/j.1600-0625.2011.01329.x · 3.76 Impact Factor
Show more