Hypoxia and inflammation.

Department of Anesthesiology, University of Colorado Denver, Aurora, CO 80045, USA.
New England Journal of Medicine (Impact Factor: 54.42). 02/2011; 364(7):656-65. DOI: 10.1056/NEJMra0910283
Source: PubMed
  • [Show abstract] [Hide abstract]
    ABSTRACT: Prolyl 4-hydroxylases (PHDs; PHD1, PHD2, and PHD3) are a component of cellular oxygen sensors that regulate the adaptive response depending on the oxygen concentration stabilized by hypoxia/stress-regulated genes transcription. In normoxic condition, PHD2 is required to stabilize hypoxia inducible factors. Silencing of PHD2 leads to the activation of intracellular signaling including RhoA and Rho-associated protein kinase (ROCK), which are key regulators of neurite growth. In this study, we determined that genetic or pharmacological inhibition of PHD2 in cultured cortical neurons prevents neurite elongation through a ROCK-dependent mechanism. We then explored the role of PHDs in axonal reorganization following a traumatic brain injury in adult mice. Unilateral destruction of motor cortex resulted in behavioral deficits due to disruption of the corticospinal tract (CST), a part of the descending motor pathway. In the spinal cord, sprouting of fibers from the intact side of the CST into the denervated side is thought to contribute to the recovery process following an injury. Intracortical infusion of PHD inhibitors into the intact side of the motor cortex abrogated spontaneous formation of CST collaterals and functional recovery after damage to the sensorimotor cortex. These findings suggest PHDs have an important role in the formation of compensatory axonal networks following an injury and may represent a new molecular target for the central nervous system disorders.
    Cell Death & Disease 6:e1638. DOI:10.1038/cddis.2015.5 · 5.18 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Although it is accepted that macrophage glycolysis is upregulated under hypoxic conditions, it is not known whether this is linked to a similar increase in macrophage proinflammatory activation and whether specific energy demands regulate cell viability in the atheromatous plaque. We studied the interplay between macrophage energy metabolism, polarization, and viability in the context of atherosclerosis. Cultured human and murine macrophages and an in vivo murine model of atherosclerosis were used to evaluate the mechanisms underlying metabolic and inflammatory activity of macrophages in the different atherosclerotic conditions analyzed. We observed that macrophage energetics and inflammatory activation are closely and linearly related, resulting in dynamic calibration of glycolysis to keep pace with inflammatory activity. In addition, we show that macrophage glycolysis and proinflammatory activation mainly depend on hypoxia-inducible factor and on its impact on glucose uptake, and on the expression of hexokinase II and ubiquitous 6-phosphofructo-2-kinase. As a consequence, hypoxia potentiates inflammation and glycolysis mainly via these pathways. Moreover, when macrophages' ability to increase glycolysis through 6-phosphofructo-2-kinase is experimentally attenuated, cell viability is reduced if subjected to proinflammatory or hypoxic conditions, but unaffected under control conditions. In addition to this, granulocyte-macrophage colony-stimulating factor enhances anerobic glycolysis while exerting a mild proinflammatory activation. These findings, in human and murine cells and in an animal model, show that hypoxia potentiates macrophage glycolytic flux in concert with a proportional upregulation of proinflammatory activity, in a manner that is dependent on both hypoxia-inducible factor -1α and 6-phosphofructo-2-kinase. © 2015 American Heart Association, Inc.
    Arteriosclerosis Thrombosis and Vascular Biology 04/2015; DOI:10.1161/ATVBAHA.115.305551 · 5.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In this mini-review, we will discuss recent findings that implicate neutrophil infiltration and function in establishing a metabolic environment to facilitate efficient pathogen clearance. For decades, neutrophils have been regarded as short lived, nonspecific granulocytes, equipped with toxic antimicrobial factors and a respiratory burst generating ROS. Recent findings demonstrate the importance of HIF signaling in leukocytes and surrounding tissues during inflammation. Here, we will review the potential mechanisms and outcomes of HIF stabilization within the intestinal mucosa. © Society for Leukocyte Biology.