Article

Biflavonoids are superior to monoflavonoids in inhibiting amyloid-β toxicity and fibrillogenesis via accumulation of nontoxic oligomer-like structures.

Department of Biomaterials Engineering, Chosun University, Gwanju 501-759, Republic of Korea.
Biochemistry (Impact Factor: 3.38). 02/2011; 50(13):2445-55. DOI: 10.1021/bi101731d
Source: PubMed

ABSTRACT Polymerization of monomeric amyloid-β peptides (Aβ) into soluble oligomers and insoluble fibrils is one of the major pathways triggering the pathogenesis of Alzheimer's disease (AD). Using small molecules to prevent the polymerization of Aβ peptides can, therefore, be an effective therapeutic strategy for AD. In this study, we investigate the effects of mono- and biflavonoids in Aβ42-induced toxicity and fibrillogenesis and find that the biflavonoid taiwaniaflavone (TF) effectively and specifically inhibits Aβ toxicity and fibrillogenesis. Compared to TF, the monoflavonoid apigenin (AP) is less effective and less specific. Our data show that differential effects of the mono- and biflavonoids in Aβ fibrillogenesis correlate with their varying cytoprotective efficacies. We also find that other biflavonoids, namely, 2',8''-biapigenin, amentoflavone, and sumaflavone, can also effectively inhibit Aβ toxicity and fibrillogenesis, implying that the participation of two monoflavonoids in a single biflavonoid molecule enhances their activity. Biflavonoids, while strongly inhibiting Aβ fibrillogenesis, accumulate nontoxic Aβ oligomeric structures, suggesting that these are off-pathway oligomers. Moreover, TF abrogates the toxicity of preformed Aβ oligomers and fibrils, indicating that TF and other biflavonoids may also reduce the toxicity of toxic Aβ species. Altogether, our data clearly show that biflavonoids, possibly because of the possession of two Aβ binders separated by an appropriate size linker, are likely to be promising therapeutics for suppressing Aβ toxicity.

0 Bookmarks
 · 
106 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Alzheimer's disease (AD) is characterized by extracellular senile plaques, intracellular neurofibrillary tangles, and memory loss. Aggregated amyloid-β (Aβ), oxidative stress, and inflammation have a pivotal role in the pathogenesis of AD. Therefore, the inhibition of Aβ-induced neurotoxicity, oxidative stress, and inflammation is a potential therapeutic strategy for the treatment of AD. In this study, a heptapeptide, isolated from a Ph.D.-C7C library by phage display, attenuated Aβ42-induced cytotoxicity in SH-SY5Y neuroblastoma cells, and reduced Aβ42-induced oxidative stress by decreasing the production of reactive oxygen species and glutathione disulfide. As a result, glutathione level increased and superoxide dismutase and glutathione peroxidase activities were enhanced in vitro and in vivo. This peptide also suppressed inflammatory response by decreasing the release of pro-inflammatory cytokines, such as tumor necrosis factor α and interleukin 1β, in microglia and by reducing the microgliosis and astrogliosis in AD transgenic mice. This peptide was intracerebroventricularly administered to the APPswe/PS1dE9 transgenic mice. We found that this peptide significantly improved the spatial memory and reduced the amyloid plaque burden and soluble and insoluble Aβ levels. Our findings suggested that this multifunctional peptide has a therapeutic potential for an Aβ-targeted treatment of AD.
    Free Radical Biology and Medicine 06/2014; · 5.71 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Backgrounds: The process of amyloid proteins aggregation causes several human neuropathologies. In some cases, e.g. fibrillar deposits of insulin, the problems are generated in the processes of production and purification of protein and in the pump devices or injectable preparations for diabetics. Experimental kinetics and adequate modelling of chemical inhibition from amyloid aggregation are of practical importance in order to study the viable processing, formulation and storage as well as to predict and optimize the best conditions to reduce the effect of protein nucleation. In this manuscript, experimental data of insulin, Abeta42 amyloid protein and apomyoglobin fibrillation from recent bibliography were selected to evaluate the capability of a bivariate sigmoid equation to model them. The mathematical functions (logistic combined with Weibull equation) were used in reparameterized form and the effect of inhibitor concentrations on kinetic parameters from logistic equation were perfectly defined and explained. The surfaces of data were accurately described by proposed model and the presented analysis characterized the inhibitory influence on the protein aggregation by several chemicals. Discrimination between true and apparent inhibitors was also confirmed by the bivariate equation. EGCG for insulin (working at pH = 7.4/T = 37[degree sign]C) and taiwaniaflavone for Abeta42 were the compounds studied that shown the greatest inhibition capacity. An accurate, simple and effective model to investigate the inhibition of chemicals on amyloid protein aggregation has been developed. The equation could be useful for the clear quantification of inhibitor potential of chemicals and rigorous comparison among them.
    BMC pharmacology & toxicology. 02/2014; 15(1):9.
  • [Show abstract] [Hide abstract]
    ABSTRACT: Graphical abstract Scheme to represent enzyme catalyzed formation of Aβ-fibrils from Aβ-peptide fragment monomers and subsequent depletion of both fibrils and monomers by Ag/Au nanoparticles.
    Neurochemistry International 02/2014; · 2.65 Impact Factor