Genetic analyses of atypical Toxoplasma gondii strains reveal a fourth clonal lineage in North America

Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110, USA.
International journal for parasitology (Impact Factor: 3.4). 02/2011; 41(6):645-55. DOI: 10.1016/j.ijpara.2011.01.005
Source: PubMed

ABSTRACT Toxoplasma gondii is a widespread parasite of animals that causes zoonotic infections in humans. Previous studies have revealed a strongly clonal population structure in North America and Europe, while strains from South America are genetically separate and more diverse. However, the composition within North America has been questioned by recent descriptions of genetically more variable strains from this region. Here, we examined an expanded set of isolates using sequenced-based phylogenetic and population analyses to re-evaluate the population structure of T. gondii in North America. Our findings reveal that isolates previously defined by atypical restriction fragment length polymorphism patterns fall into two discrete groups. In one case, these new isolates represent variants of an existing lineage, from which they differ only by minor mutational drift. However, in the second case, it is evident that these isolates define a completely new lineage that is common in North America. Support for this new lineage was based on phylogeny, principle components analysis, STRUCTURE analyses, and statistical analysis of gene flow between groups. This new group, referred to as haplogroup 12, contains divergent genotypes previously referred to as A and X, isolated from sea otters. Consistent with this, group 12 was found primarily in wild animals, as well as occasionally in humans. This new lineage also has a highly clonal population structure. Analysis of the inheritance of multilocus genotypes revealed that different strains within group 12 are the products of a single recombination event between type 2 and a unique parental lineage. Collectively, the archetypal type 2 has been associated with clonal expansion of a small number of lineages in the North, as a consequence of separate but infrequent genetic crosses with several different parental lines.

Download full-text


Available from: Chunlei Su, Jul 06, 2015
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Toxoplasma gondii infects virtually all warm-blooded hosts worldwide. Recently, attention has been focused on the genetic diversity of the parasite to explain its pathogenicity in different hosts. It has been hypothesized that interaction between feral and domestic cycles of T. gondii may increase unusual genotypes in domestic cats and facilitate transmission of potentially more pathogenic genotypes to humans, domestic animals, and wildlife. In the present study, we tested black bear (Ursus americanus), bobcat (Felis rufus), and feral cat (Felis catus) from the state of Pennsylvania for T. gondii infection. Antibodies to T. gondii were found in 32 (84.2%) of 38 bears, both bobcats, and 2 of 3 feral cats tested by the modified agglutination test (cut off titer 1:25). Hearts from seropositive animals were bioassayed in mice, and viable T. gondii was isolated from 3 of 32 bears, 2 of 2 bobcats, and 2 of 3 feral cats. DNA isolated from culture-derived tachyzoites of these isolates was characterized using multilocus PCR-RFLP markers. Three genotypes were revealed, including ToxoDB PCR-RFLP genotype #1 or #3 (Type II, 1 isolate), #5 (Type 12, 3 isolates), and #216 (3 isolates), adding to the evidence of genetic diversity of T. gondii in wildlife in Pennsylvania. Pathogenicity of 3 T. gondii isolates (all #216, 1 from bear, and 2 from feral cat) was determined in outbred Swiss Webster mice; all three were virulent causing 100% mortality. Results indicated that highly mouse pathogenic strains of T. gondii are circulating in wildlife, and these strains may pose risk to infect human through consuming of game meat. This article is protected by copyright. All rights reserved.
    Journal of Eukaryotic Microbiology 11/2014; DOI:10.1111/jeu.12196 · 2.91 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: To contribute to the insight into the worldwide population structure of Toxoplasma gondii, we genetically characterized a total of eight strains isolated from intermediate hosts including humans, sheep and pigeons in Serbia. Although parasite DNA was detected in 28.2% (60/213) of the human samples from 162 patients serologically suspected of active toxoplasmosis, as well as in 5/7 seropositive pigeons and in 2/12 seropositive sheep examined, multilocus PCR-RFLP genotyping, using SAG1, 5′SAG2, 3′SAG2, GRA6, 5′GRA7 and 3′GRA7 as markers, was successful in only four human isolates (of which one was isolated from both the bronchoalveolar lavage fluid and blood samples of a single patient), one sheep and three pigeons. Of the eight isolates, five were type II (62.5%), one was type III, one was atypical, and one had a type I allele at GRA6 as the single locus genotyped. Although type II, as elsewhere in Europe, predominated, these results may suggest a higher genetic diversity of T. gondii in Serbia, reflecting local environmental contamination and also the geographical position of the country in South-East Europe. deletion
    Comparative immunology, microbiology and infectious diseases 05/2014; 37(3). DOI:10.1016/j.cimid.2014.03.001 · 2.11 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: PCR-RFLP and nucleotide sequencing based genotyping of Toxoplasma gondii Indian isolates (Izatnagar and Chennai isolates and Chennai clone) vis-a vis RH-IVRI strain was conducted by targeting GRA6 as genetic marker. The 791 bp GRA6 product was PCR amplified from the genomic DNA of different T. gondii Indian isolates, including the RH-IVRI strain. Tru1I restriction endonuclease based PCR-RFLP of GRA6 sequence produced polymorphic digestion pattern that discriminated the virulent RH-IVRI strain (as type I) from the moderately virulent local isolates as type III. The PCR amplicon of T. gondii GRA6 from RH-IVRI strain as well as from the local isolates were cloned in cloning vector and custom sequenced. The nucleotide and deduced amino acid sequences of T. gondii isolates were aligned with that of the type I, II and III strains (RH, EVERLEY, ME49, C56, TONT and NED) available in public domain and analyzed in silico using MEGA version 4.0 software. Nucleotide sequencing and phylogenetic analysis of GRA6 marker from the Indian isolates revealed a close genetic relationship with type III strains of T. gondii. Further, detection of a single nucleotide polymorphism (SNP) at positions 162 and 171 of the GRA6 marker, established the lineage of Indian isolates as type III. This is the first report on characterization of T. gondii lineage as type III in selective chicken population of India based on PCR-RFLP and sequence analysis of GRA6 gene.
    Acta Parasitologica 04/2014; 59(4):666–674. DOI:10.2478/s11686-014-0288-1 · 0.97 Impact Factor