The role of the occipital face area in the cortical face perception network.

Institute of Cognitive Neuroscience, University College London, Alexandra House, London, WC1N 3AR, UK.
Experimental Brain Research (Impact Factor: 2.17). 02/2011; 209(4):481-93. DOI: 10.1007/s00221-011-2579-1
Source: PubMed

ABSTRACT Functional magnetic resonance imaging (fMRI) studies have identified spatially distinct face-selective regions in human cortex. These regions have been linked together to form the components of a cortical network specialized for face perception but the cognitive operations performed in each region are not well understood. In this paper, we review the evidence concerning one of these face-selective regions, the occipital face area (OFA), to better understand what cognitive operations it performs in the face perception network. Neuropsychological evidence and transcranial magnetic stimulation (TMS) studies demonstrate the OFA is necessary for accurate face perception. fMRI and TMS studies investigating the functional role of the OFA suggest that it preferentially represents the parts of a face, including the eyes, nose, and mouth and that it does so at an early stage of visual perception. These studies are consistent with the hypothesis that the OFA is the first stage in a hierarchical face perception network in which the OFA represents facial components prior to subsequent processing of increasingly complex facial features in higher face-selective cortical regions.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Systematic patient lesion studies review combined with neuroimaging meta-analysis.•Brain areas for modality-specific voice, face and name recognition are revealed.•There are several multimodal hubs for person recognition in the human brain.•Findings lead to revision of current models of person-identity recognition.
    Neuroscience & Biobehavioral Reviews 11/2014; · 10.28 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Transcranial direct current stimulation (tDCS) is a non-invasive brain stimulation technique that can modulate cortical excitability. Although the clinical value of tDCS has been advocated, the potential of tDCS in cognitive rehabilitation of face processing deficits is less understood. Face processing has been associated with the occipito-temporal cortex (OT). The present study investigated whether face processing in healthy adults can be modulated by applying tDCS over the OT. Experiment 1 investigated whether tDCS can affect N170, a face-sensitive ERP component, with a face orientation judgment task. The N170 in the right hemisphere was reduced in active stimulation conditions compared with the sham stimulation condition for both upright faces and inverted faces. Experiment 2 further demonstrated that tDCS can modulate the composite face effect, a type of holistic processing that reflects the obligatory attention to all parts of a face. The composite face effect was reduced in active stimulation conditions compared with the sham stimulation condition. Additionally, the current polarity did not modulate the effect of tDCS in the two experiments. The present study demonstrates that N170 can be causally manipulated by stimulating the OT with weak currents. Furthermore, our study provides evidence that obligatory attention to all parts of a face can be affected by the commonly used tDCS parameter setting.
    PLoS ONE 12/2014; 9(12):e115772. · 3.53 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Recognizing the identity of other individuals across different sensory modalities is critical for successful social interaction. In the human brain, face- and voice-sensitive areas are separate, but structurally connected. What kind of information is exchanged between these specialized areas during cross-modal recognition of other individuals is currently unclear. For faces, specific areas are sensitive to identity and to physical properties. It is an open question whether voices activate representations of face identity or physical facial properties in these areas. To address this question, we used functional magnetic resonance imaging in humans and a voice-face priming design. In this design, familiar voices were followed by morphed faces that matched or mismatched with respect to identity or physical properties. The results showed that responses in face-sensitive regions were modulated when face identity or physical properties did not match to the preceding voice. The strength of this mismatch signal depended on the level of certainty the participant had about the voice identity. This suggests that both identity and physical property information was provided by the voice to face areas. The activity and connectivity profiles differed between face-sensitive areas: (i) the occipital face area seemed to receive information about both physical properties and identity, (ii) the fusiform face area seemed to receive identity, and (iii) the anterior temporal lobe seemed to receive predominantly identity information from the voice. We interpret these results within a prediction coding scheme in which both identity and physical property information is used across sensory modalities to recognize individuals. Hum Brain Mapp, 2014. © 2014 Wiley Periodicals, Inc.
    Human Brain Mapping 09/2014; · 6.92 Impact Factor

Full-text (2 Sources)

Available from
Jun 1, 2014