Induction of Metastatic Gastric Cancer by Peroxisome Proliferator-Activated Receptorδ Activation

Department of Oncology, Lombardi Comprehensive Cancer Center, Washington, DC 20057, USA.
PPAR Research (Impact Factor: 1.64). 12/2010; 2010:571783. DOI: 10.1155/2010/571783
Source: PubMed

ABSTRACT Peroxisome proliferator-activated receptorδ (PPARδ) regulates a multiplicity of physiological processes associated with glucose and lipid metabolism, inflammation, and proliferation. One or more of these processes likely create risk factors associated with the ability of PPARδ agonists to promote tumorigenesis in some organs. In the present study, we describe a new gastric tumor mouse model that is dependent on the potent and highly selective PPARδ agonist GW501516 following carcinogen administration. The progression of gastric tumorigenesis was rapid as determined by magnetic resonance imaging and resulted in highly metastatic squamous cell carcinomas of the forestomach within two months. Tumorigenesis was associated with gene expression signatures indicative of cell adhesion, invasion, inflammation, and metabolism. Increased PPARδ expression in tumors correlated with increased PDK1, Akt, β-catenin, and S100A9 expression. The rapid development of metastatic gastric tumors in this model will be useful for evaluating preventive and therapeutic interventions in this disease.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Biologically accurate mouse models of human cancer have become important tools for the study of human disease. The anatomical location of various target organs, such as brain, pancreas, and prostate, makes determination of disease status difficult. Imaging modalities, such as magnetic resonance imaging, can greatly enhance diagnosis, and longitudinal imaging of tumor progression is an important source of experimental data. Even in models where the tumors arise in areas that permit visual determination of tumorigenesis, longitudinal anatomical and functional imaging can enhance the scope of studies by facilitating the assessment of biological alterations, (such as changes in angiogenesis, metabolism, cellular invasion) as well as tissue perfusion and diffusion. One of the challenges in preclinical imaging is the development of infrastructural platforms required for integrating in vivo imaging and therapeutic response data with ex vivo pathological and molecular data using a more systems-based multiscale modeling approach. Further challenges exist in integrating these data for computational modeling to better understand the pathobiology of cancer and to better affect its cure. We review the current applications of preclinical imaging and discuss the implications of applying functional imaging to visualize cancer progression and treatment. Finally, we provide new data from an ongoing preclinical drug study demonstrating how multiscale modeling can lead to a more comprehensive understanding of cancer biology and therapy.
    American Journal Of Pathology 12/2012; 182(2). DOI:10.1016/j.ajpath.2012.09.024 · 4.60 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Peroxisome proliferator-activated receptor (PPAR) δ is implicated in the carcinogenesis of several types of cancer. However, the therapeutic efficacy of PPARδ ligands against cancer progression is unclear. Here, we showed that PPARδ modulates the migration and invasion of melanoma cells by up-regulating Snail expression. Activation of PPARδ by GW501516, a specific ligand for PPARδ, significantly increased the migration and invasion of highly metastatic A375SM cells, but not that of low metastatic A375P cells. The migration- and invasion-promoting effects of PPARδ on A375SM cells was associated with increased Snail expression, which was accompanied by a decrease in E-cadherin expression. Furthermore, a significant concentration- and time-dependent increase in the levels of Snail mRNA and protein was observed in A375SM cells (but not A375P cells) treated with GW501516. The effects of GW501516 were almost completely abrogated by a small interfering RNA against PPARδ, suggesting that PPARδ mediates the effects of GW501516. Activation of PPARδ in SK-MEL-2 and SK-MEL-5 (but not SK-MEL-3) melanoma cell lines also led to significant increases in the expression of Snail mRNA and protein, which mirrored the invasive and migratory potential of these cell lines. These results suggest that PPARδ promotes the aggressive phenotype observed in highly metastatic melanoma cells by up-regulating Snail.
  • [Show abstract] [Hide abstract]
    ABSTRACT: The peroxisome proliferator-activated receptor-δ (PPARδ) regulates a multitude of physiological processes associated with glucose and lipid metabolism, inflammation, and proliferation. One or more of these processes are potential risk factors for the ability of PPARδ agonists to promote tumorigenesis in the mammary gland. In this study, we describe a new transgenic mouse model in which activation of PPARδ in the mammary epithelium by endogenous or synthetic ligands resulted in progressive histopathologic changes that culminated in the appearance of estrogen receptor- and progesterone receptor-positive and ErbB2-negative infiltrating ductal carcinomas. Multiparous mice presented with mammary carcinomas after a latency of 12 months, and administration of the PPARδ ligand GW501516 reduced tumor latency to 5 months. Histopathologic changes occurred concurrently with an increase in an inflammatory, invasive, metabolic, and proliferative gene signature, including expression of the trophoblast gene, Plac1, beginning 1 week after GW501516 treatment, and remained elevated throughout tumorigenesis. The appearance of malignant changes correlated with a pronounced increase in phosphatidylcholine and lysophosphatidic acid metabolites, which coincided with activation of Akt and mTor signaling that were attenuated by treatment with the mTor inhibitor everolimus. Our findings are the first to show a direct role of PPARδ in the pathogenesis of mammary tumorigenesis, and suggest a rationale for therapeutic approaches to prevent and treat this disease. Cancer Res; 73(14); 1-13. ©2013 AACR.
    Cancer Research 06/2013; 73(14). DOI:10.1158/0008-5472.CAN-13-0322 · 9.28 Impact Factor

Full-text (3 Sources)

Available from
Mar 9, 2015