Article

Host and gut microbiota symbiotic factors: lessons from inflammatory bowel disease and successful symbionts.

Harvard School of Public Health, Boston, MA, USA.
Cellular Microbiology (Impact Factor: 4.81). 02/2011; 13(4):508-17. DOI: 10.1111/j.1462-5822.2011.01572.x
Source: PubMed

ABSTRACT Humans are colonized by a diverse collection of microbes, the largest numbers of which reside in the distal gut. The vast majority of humans coexist in a beneficial equilibrium with these microbes. However, disruption of this mutualistic relationship can manifest itself in human diseases such as inflammatory bowel disease. Thus the study of inflammatory bowel disease and its genetics can provide insight into host pathways that mediate host-microbiota symbiosis. Bacteria of the human intestinal ecosystem face numerous challenges imposed by human dietary intake, the mucosal immune system, competition from fellow members of the gut microbiota, transient ingested microbes and invading pathogens. Considering features of human resident gut bacteria provides the opportunity to understand how microbes have achieved their symbiont status. While model symbionts have provided perspective into host-microbial homeostasis, high-throughput approaches are becoming increasingly practical for functionally characterizing the gut microbiota as a community.

0 Bookmarks
 · 
105 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: The intestinal microbiota is a complicated ecosystem that influences many aspects of host physiology (i.e. diet, disease development, drug metabolism, and regulation of the immune system). It also exhibits spatial patterning and temporal dynamics. In this review, the effects of internal and external (environmental) factors on intestinal microbiota are discussed. We describe the roles of the gut microbiota in maintaining intestinal and immune system homeostasis and the relationship between gut microbiota and diseases. In particular, the contributions of polysaccharides, as the most abundant diet components in intestinal microbiota and host health are presented. Finally, perspectives for research avenues relating to gut microbiota are also discussed.
    Biotechnology advances 12/2012; · 8.25 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: A central challenge in microbial community ecology is the delineation of appropriate units of biodiversity, which can be taxonomic, phylogenetic or functional in nature. The term "community" is applied ambiguously; in some cases the term refers simply to a set of observed entities, while in other cases it requires that these entities interact with one another. Microbes can rapidly gain and lose genes, potentially decoupling community roles from taxonomic and phylogenetic groupings. Trait-based approaches offer a useful alternative, but many traits can be defined based on gene functions, metabolic modules, and genomic properties, and the optimal set of traits to choose is often not obvious. An analysis that considers taxon assignment and traits in concert may be ideal, with the strengths of each approach offsetting the weaknesses of the other. Individual genes also merit consideration as entities in an ecological analysis, with characteristics such as diversity, turnover, and interactions modeled using genes rather than organisms as entities. We identify some promising avenues of research that are likely to yield a deeper understanding of microbial communities that shift from observation-based questions of "Who is There?" and "What Are They Doing?" to the mechanistically driven "How Will They Respond?" This article is protected by copyright. All rights reserved.
    FEMS microbiology reviews 08/2013; · 10.96 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Molecular analyses of symbiotic relationships are challenging our biological definitions of individuality and supplanting them with a new notion of normal part-whole relationships. This new notion is that of a 'holobiont', a consortium of organisms that becomes a functionally integrated 'whole'. This holobiont includes the zoological organism (the 'animal') as well as its persistent microbial symbionts. This new individuality is seen on anatomical and physiological levels, where a diversity of symbionts form a new 'organ system' within the zoological organism and become integrated into its metabolism and development. Moreover, as in normal development, there are reciprocal interactions between the 'host' organism and its symbionts that alter gene expression in both sets of cells. The immune system, instead of being seen as functioning solely to keep microbes out of the body, is also found to develop, in part, in dialogue with symbionts. Moreover, the immune system is actively involved in the colonization of the zoological organism, functioning as a mechanism for integrating microbes into the animal-cell community. Symbionts have also been found to constitute a second mode of genetic inheritance, providing selectable genetic variation for natural selection. We develop, grow and evolve as multi-genomic consortia/teams/ecosystems.
    Journal of Biosciences 04/2014; 39(2):201-9. · 1.76 Impact Factor