Host and gut microbiota symbiotic factors: lessons from inflammatory bowel disease and successful symbionts

Harvard School of Public Health, Boston, MA, USA.
Cellular Microbiology (Impact Factor: 4.82). 02/2011; 13(4):508-17. DOI: 10.1111/j.1462-5822.2011.01572.x
Source: PubMed

ABSTRACT Humans are colonized by a diverse collection of microbes, the largest numbers of which reside in the distal gut. The vast majority of humans coexist in a beneficial equilibrium with these microbes. However, disruption of this mutualistic relationship can manifest itself in human diseases such as inflammatory bowel disease. Thus the study of inflammatory bowel disease and its genetics can provide insight into host pathways that mediate host-microbiota symbiosis. Bacteria of the human intestinal ecosystem face numerous challenges imposed by human dietary intake, the mucosal immune system, competition from fellow members of the gut microbiota, transient ingested microbes and invading pathogens. Considering features of human resident gut bacteria provides the opportunity to understand how microbes have achieved their symbiont status. While model symbionts have provided perspective into host-microbial homeostasis, high-throughput approaches are becoming increasingly practical for functionally characterizing the gut microbiota as a community.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The notion of the "biological individual" is crucial to studies of genetics, immunology, evolution, development, anatomy, and physiology. Each of these biological subdisciplines has a specific conception of individuality, which has historically provided conceptual contexts for integrating newly acquired data. During the past decade, nucleic acid analysis, especially genomic sequencing and high-throughput RNA techniques, has challenged each of these disciplinary definitions by finding significant interactions of animals and plants with symbiotic microorganisms that disrupt the boundaries that heretofore had characterized the biological individual. Animals cannot be considered individuals by anatomical or physiological criteria because a diversity of symbionts are both present and functional in completing metabolic pathways and serving other physiological functions. Similarly, these new studies have shown that animal development is incomplete without symbionts. Symbionts also constitute a second mode of genetic inheritance, providing selectable genetic variation for natural selection. The immune system also develops, in part, in dialogue with symbionts and thereby functions as a mechanism for integrating microbes into the animal-cell community. Recognizing the "holobiont"--the multicellular eukaryote plus its colonies of persistent symbionts--as a critically important unit of anatomy, development, physiology, immunology, and evolution opens up new investigative avenues and conceptually challenges the ways in which the biological subdisciplines have heretofore characterized living entities.
    The Quarterly Review of Biology 12/2012; 87(4):325-41. DOI:10.1086/668166 · 5.06 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Metagenomic methods provide an experimental approach to inform the relationships between hosts and their microbial inhabitants. Previous studies have provided the conceptual realization that microbiomes are dynamic among hosts and the intimacy of relation between micro- and macroorganisms. Here, we present an intestinal microflora community analysis for members of the order Chiroptera and investigate the relative influence of variables in shaping observed microbiome relationships. The variables ranged from those considered to have ancient and long-term influences (host phylogeny and life history) to the relatively transient variable of host reproductive condition. In addition, collection locality data, representing the geographic variable, were included in analyses. Results indicate a complex influence of variables in shaping sample relationships in which signal for host phylogeny is recovered at broad taxonomic levels (family), whereas intrafamilial analyses disclosed various degrees of resolution for the remaining variables. Although cumulative probabilities of assignment indicated both reproductive condition and geography influenced relationships, comparison of ecological measures among groups revealed statistical differences between most variable classifications. For example, ranked ecological diversity was associated with host phylogeny (deeper coalescences among families were associated with more microfloral diversity), dietary strategy (herbivory generally retained higher diversity than carnivory) and reproductive condition (reproductively active females displayed more diverse microflora than nonreproductive conditions). Overall, the results of this study describe a complex process shaping microflora communities of wildlife species as well as provide avenues for future research that will further inform the nature of symbiosis between microflora communities and hosts.
    Molecular Ecology 04/2012; 21(11):2617-27. DOI:10.1111/j.1365-294X.2012.05568.x · 5.84 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Probiotics have been proposed as modulators of gut inflammation, especially in inflammatory bowel disease (IBD). In order to be able to use them in these clinical conditions, their capacity to modulate immune responses towards other stimuli or microorganisms has to be thoroughly understood. In the present study, three different potentially probiotic strains, Bifidobacterium breve (NumRes 204), Lactobacillus rhamnosus (NumRes1) and Lactobacillus casei (DN-114 001), have been studied for their potential to modulate responses to stimulation with pure pattern-recognition receptor (PRR) ligands or to the gut commensal fungus Candida albicans. Cytokine production induced by PRR ligands or C. albicans was assessed in conditions of simultaneous stimulation or preincubation of primary immune cells with Bifidobacterium or Lactobacillus spp. Results indicate that simultaneous stimulation leads to potentiation of IL-1β and IL-6 production, while the TNFα and IFN-γ production was inhibited. In settings of pre-incubation with these potentially probiotic strains, lower production of TNFα was observed in the presence of B. breve. Moreover, C. albicans-induced IL-17 production was decreased after pre-incubation with both Bifidobacterium or Lactobacillus probiotic strains. Whereas C. albicans induced cytokines are dampened by the tested probiotic strains, TNFα and IL-6 production by pure pattern-recognition receptor ligands are potentiated. Interestingly, an important role of Toll-like receptor 9 signalling that involves JNK kinase in the modulatory effects of these probiotic strains has been identified. In conclusion, specific probiotic strains exhibit cross-tolerance effects towards other inflammatory stimuli, especially C. albicans, which might have beneficial effects on gut inflammation.
    Cytokine 04/2012; 59(1):159-65. DOI:10.1016/j.cyto.2012.03.020 · 2.87 Impact Factor