Effects of varying virus-spiking conditions on a virus-removal filter Planova™ 20N in a virus validation study of antibody solutions.

Technology Development, Planova Div., Asahi Kasei Medical Co. Ltd., 2700 Asahimachi 6-Chome, Nobeoka, Miyazaki 882-0847, Japan.
Biotechnology Progress (Impact Factor: 1.85). 01/2011; 27(1):162-9. DOI: 10.1002/btpr.533
Source: PubMed

ABSTRACT We aimed to investigate the effect of virus-spiking conditions on the filter performance (flux, flux decay, and parvovirus reduction) of the small virus filter Planova™ 20N. We used three kinds of porcine parvovirus (PPV) stocks: serum, serum-free, and purified. The flux profile with PPV spiking was similar to that without spiking for normal load filtration of about 250-300 L/m(2) . High volume (3 vol %) of serum-free PPV and 1 vol % serum PPV reduced the flux to some extent for high-load filtration (over 10 h, ca., 500 L/m(2) , 5 mg/mL IgG solution). Log reduction value (LRV) of PPV was maintained at a high level (>5) over the filtration volume. Flux for Planova™ 20N was only minimally affected by the use of different virus stocks for spiking. Transmission electron microphotography showed that the distribution of PPV particles captured inside the membrane wall was reached until the -60% thickness of the membrane, showing that the membrane of Planova™ 20N has a thick effective layer for virus removal. These results provided evidence for the robustness of the filter performance of Planova™ 20N, showing that it was not easily affected by virus spiking conditions and that it has a large capacity for high-load conditions.

  • [Show abstract] [Hide abstract]
    ABSTRACT: Several recent studies have reported a decline in virus retention during virus challenge filtration experiments, although the mechanism(s) governing this phenomenon for different filters remains uncertain. Experiments were performed to evaluate the retention of PP7 and PR772 bacteriophage through Ultipor VF Grade DV20 virus filters during constant pressure filtration. While the larger PR772 phage was fully retained under all conditions, a 2-log decline in retention of the small PP7 phage was observed at high throughputs, even under conditions where there was no decline in filtrate flux. In addition, pre-fouling the membrane with an IgG solution had no effect on phage retention. An internal polarization model was developed to describe the decline in phage retention arising from the accumulation of phage in the upper (reservoir) layer within the filter which increases the challenge to the lower (rejection) layer. Independent support for this internal polarization phenomenon was provided by confocal microscopy of fluorescently labeled phage within the membrane. The model was in good agreement with phage retention data over a wide range of phage titers, confirming that virus retention is throughput dependent and supporting current recommendations for virus retention validation studies. These results provide important insights into the factors governing virus retention by membrane filters and their dependence on the underlying structure of the virus filter membrane. © 2014 American Institute of Chemical Engineers Biotechnol. Prog., 2014.
    Biotechnology Progress 03/2014; · 1.85 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Viral filtration is routinely incorporated into the downstream purification processes for the production of biologics produced in mammalian cell cultures (MCC) to remove potential viral contaminants. In recent years, the use of retentive filters designed for retaining parvovirus (˜20 nm) has become an industry standard in a conscious effort to further improve product safety. Since retentive filters remove viruses primarily by the size exclusion mechanism, it is expected that filters designed for parvovirus removal can effectively clear larger viruses such as retroviruses (˜100 nm). In an attempt to reduce the number of viral clearance studies, we have taken a novel approach to demonstrate the feasibility of claiming modular retrovirus clearance for Asahi Planova 20N filters. Porcine parvovirus (PPV) and xenotropic murine leukemia virus (XMuLV) were co-spiked into six different feedstreams and then subjected to laboratory scale Planova 20N filtration. Our results indicate that Planova 20N filters consistently retain retroviruses and no retrovirus has ever been detected in the filtrates even when significant PPV breakthrough is observed. Based on the data from multiple in-house viral validation studies and the results from the co-spiking experiments, we have successfully claimed a modular retrovirus clearance of greater than 6 log10 reduction factors (LRF) to support clinical trial applications in both USA and Europe. © 2013 American Institute of Chemical Engineers Biotechnol. Prog., 2013.
    Biotechnology Progress 10/2013; · 1.85 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: In this study, the virus-removal capacity of nanofiltration was assessed using validated laboratory scale models on a wide range of viruses (pseudorabies virus; human immunodeficiency virus; bovine viral diarrhea virus; West Nile virus; hepatitis A virus; murine encephalomyocarditis virus; and porcine parvovirus) with sizes from 18 nm to 200 nm and applying the different process conditions existing in a number of Grifols' plasma-derived manufacturing processes (thrombin, α1-proteinase inhibitor, Factor IX, antithrombin, plasmin, intravenous immunoglobulin, and fibrinogen). Spiking experiments (n = 133) were performed in process intermediate products, and removal was subsequently determined by infectivity titration. Reduction Factor (RF) was calculated by comparing the virus load before and after nanofiltration under each product purification condition. In all experiments, the RFs were close to or greater than 4 log10 (>99.99% of virus elimination). RF values were not significantly affected by the process conditions within the limits assayed (pH, ionic strength, temperature, filtration ratio, and protein concentration). The virus-removal capacity of nanofiltration correlated only with the size of the removed agent. In conclusion, nanofiltration, as used in the manufacturing of several Grifols' products, is consistent, robust, and not significantly affected by process conditions.
    Biologicals 01/2013; · 1.62 Impact Factor