Article

Antiinflammatory and antifibrotic effects of the oral direct thrombin inhibitor dabigatran etexilate in a murine model of interstitial lung disease.

Medical University of South Carolina, Charleston, SC, USA.
Arthritis & Rheumatology (Impact Factor: 7.48). 02/2011; 63(5):1416-25. DOI: 10.1002/art.30255
Source: PubMed

ABSTRACT Activation of the coagulation cascade leading to generation of thrombin has been documented extensively in various forms of lung injury, including that associated with systemic sclerosis. We previously demonstrated that the direct thrombin inhibitor dabigatran inhibits thrombin-induced profibrotic signaling in lung fibroblasts. This study was undertaken to test whether dabigatran etexilate attenuates lung injury in a murine model of interstitial lung disease.
Lung injury was induced in female C57BL/6 mice by a single intratracheal instillation of bleomycin. Dabigatran etexilate was given as supplemented chow beginning on day 1 of bleomycin instillation (early treatment, study of antiinflammatory effect) or on day 8 following bleomycin instillation (late treatment, study of antifibrotic effect). Mice were killed 2 weeks or 3 weeks after bleomycin instillation, and lung tissue, bronchoalveolar lavage (BAL) fluid, and plasma were investigated.
Both early treatment and late treatment with dabigatran etexilate attenuated the development of bleomycin-induced pulmonary fibrosis. Dabigatran etexilate significantly reduced thrombin activity and levels of transforming growth factor β1 in BAL fluid, while simultaneously reducing the number of inflammatory cells and protein concentrations. Histologically evident lung inflammation and fibrosis were significantly decreased in dabigatran etexilate-treated mice. Additionally, dabigatran etexilate reduced collagen, connective tissue growth factor, and α-smooth muscle actin expression in mice with bleomycin-induced lung fibrosis, whereas it had no effect on basal levels of these proteins.
Inhibition of thrombin using the oral direct thrombin inhibitor dabigatran etexilate has marked antiinflammatory and antifibrotic effects in a bleomycin model of pulmonary fibrosis. Our data provide preclinical information about the feasibility and efficacy of dabigatran etexilate as a new therapeutic approach for the treatment of interstitial lung disease.

0 Bookmarks
 · 
143 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Cytokines are small, secreted proteins that control immune responses. Within the lung, they can control host responses to injuries or infection, resulting in clearance of the insult, repair of lung tissue, and return to homeostasis. Problems can arise when this response is over exuberant and/or cytokine production becomes dysregulated. In such cases, chronic and repeated inflammatory reactions and cytokine production can be established, leading to airway remodeling and fibrosis with unintended, maladaptive consequences. In this report, we describe the cytokines and molecular mechanisms behind the pathology observed in three major chronic diseases of the lung: asthma, chronic obstructive pulmonary disease (COPD), and pulmonary fibrosis. Overlapping mechanisms are presented as potential sites for therapeutic intervention.
    F1000 Biology Reports 01/2013; 5:3.
  • American Journal of Respiratory and Critical Care Medicine 02/2014; 189(3):362-363. · 11.04 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The extrinsic coagulation cascade is involved in the fibrotic process, via thrombin-dependent induction of CCN2 (connective tissue growth factor) expression. Given the previously reported activation of the coagulation system in systemic sclerosis (SSc), we undertook the present study to investigate the involvement of cross-talk between the tissue factor (TF)-thrombin axis and endothelin 1 (ET-1) signaling in the fibrotic activity of SSc. Human colonic myofibroblasts (HCMFs) from 6 patients with SSc and gastrointestinal symptoms and from 6 control subjects were isolated and cultured under various conditions. Messenger RNA and protein levels of TF, CCN2, and endothelin receptor A (ET(A) ) were investigated. Collagen production and migratory activity of HCMFs were further assessed. HCMFs from SSc patients demonstrated increased basal CCN2 production, collagen deposition, and migration rate, in a thrombin-dependent manner. Increased TF expression was also observed in SSc HCMFs. Subsequent activation of the extrinsic coagulation system resulted in thrombin-dependent enhancement of ET(A) expression. ET(A) overexpression led to further increases in both TF expression and fibrotic activity in HCMFs. Moreover, inhibition of ET-1 signaling by bosentan abolished the TF-mediated fibrotic capacity of HCMFs. Tissue factor-thrombin signaling is involved in the increased fibrotic activity of HCMFs from patients with SSc. Moreover, the up-regulation of ET(A) expression by thrombin and the effect of ET-1 in the induction of TF expression indicate an amplification loop for enhanced collagen deposition. Therapeutic interventions targeting the extrinsic coagulation system or ET-1 signaling may provide clinical benefit by breaking this vicious circle.
    Arthritis & Rheumatology 08/2011; 63(11):3586-97. · 7.48 Impact Factor

Full-text (2 Sources)

View
18 Downloads
Available from
May 21, 2014