An Activating Transcription Factor 5-Mediated Survival Pathway as a Target for Cancer Therapy

Howard Hughes Medical Institute, Program in Gene Function, University of Massachusetts Medical School, Worcester, MA 01605, USA.
Oncotarget (Impact Factor: 6.36). 10/2010; 1(6):457-60. DOI: 10.18632/oncotarget.180
Source: PubMed


Genes that are highly expressed in cancer cells and are essential for their viability are attractive targets for the development of novel cancer therapeutics. Activating transcription factor 5 (ATF5) is an anti-apoptotic protein that is highly expressed in malignant glioma but not normal brain tissues, and is essential for glioma cell survival. Recent work has revealed an essential survival pathway mediated by ATF5 in malignant glioma; pharmacological inhibition of this pathway leads to tumor regression in mice. ATF5 is also highly expressed in a variety of other cancers, and preliminary studies have shown that the ATF5-mediated survival pathway is active in diverse human cancer cell lines. Targeting this pathway may therefore have therapeutic implications for the treatment of a wide range of cancers. In this perspective, we summarize recent advances in ATF5 research, focusing on its role in promoting cancer and its potential as a target for cancer therapy.

Download full-text


Available from: Sara K Evans,
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In recent years, numerous new targets have been identified and new experimental therapeutics have been developed. Importantly, existing non-cancer drugs found novel use in cancer therapy. And even more importantly, new original therapeutic strategies to increase potency, selectivity and decrease detrimental side effects have been evaluated. Here we review some recent advances in targeting cancer.
    Aging 12/2011; 3(12):1154-62. · 6.43 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Our previous reports showed that the cisplatin exposure induced the ATM-dependent phosphorylation of DNp63a, which is subsequently involved in transcriptional regulation of gene promoters encoding mRNAs and microRNAs in squamous cell carcinoma (SCC) cells upon cisplatin-induced cell death. We showed that phosphorylated (p)-DNp63a plays a role in upregulation of pro-apoptotic proteins, while non-p-DNp63a is implicated in pro-survival signaling. In contrast to non-p-DNp63a, p-DNp63a modulated expression of specific microRNAs in SCC cells exposed to cisplatin. These microRNAs were shown to attenuate the expression of several proteins involved in cell death/survival, suggesting the critical role for p-DNp63a in regulation of tumor cell resistance to cisplatin. Here, we studied the function of DNp63a in transcriptional activation and repression of the specific microRNA promoters whose expression is affected by cisplatin treatment of SCC cells. We quantitatively studied chromatin-associated proteins bound to tumor protein (TP) p63-responsive element, we found that p-DNp63a along with certain transcription coactivators (e.g., CARM1, KAT2B, TFAP2A, etc.) necessary to induce gene promoters for microRNAs (630 and 885-3p) or with transcription corepressors (e.g., EZH2, CTBP1, HDACs, etc.) needed to repress promoters for microRNAs (181a-5p, 374a-5p and 519a-3p) in SCC cells exposed to cisplatin.
    Cell cycle (Georgetown, Tex.) 01/2013; 12(4). DOI:10.4161/cc.23598 · 4.57 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Research has shown that cancer cells exhibit multiple deregulated pathways, involving proliferation, migration and cell death. Heat-shock-proteins have evolved as "central regulators" and are implicated in the modulation of these pathways and in organelle-specific signaling. In this instance, heat-shock-proteins (Hsps) assist cancer cells in the maturation of proteins. Hsp90 is of particular interest because its enzymatic ATPase activity is elevated in malignant cells as compared to non-neoplastic counterparts. Consistent with its high-activity in cancer cells, Hsp90 stabilizes a considerable number of proteins being instrumental in carcinogenesis and the maintenance and growth of highly malignant cancers. Among its distribution Hsp90 is also localized within mitochondria of neoplastic cells of various origin, interacting with another chaperone, TRAP1 (Tumor necrosis factor type 1 receptor-associated protein or Heat-shock-protein 75) to antagonize the cell death promoting properties of the matrix protein, Cyclophilin-D. Several preclinical studies, including in vivo studies in both orthotopic and genetic animal models, have confirmed that targeting mitochondrial Hsp90 may be a novel efficient treatment method for highly recalcitrant tumors. This review summarizes the most recent findings of mitochondrial Hsp90 signaling and its potential implications for cancer therapy.
    Cancer letters 01/2013; 333(2). DOI:10.1016/j.canlet.2013.01.045 · 5.62 Impact Factor
Show more