Article

A novel role for PSD-95 in mediating ethanol intoxication, drinking and place preference.

Section on Behavioral Science and Genetics, Laboratory for Integrative Neuroscience, National Institute on Alcohol Abuse and Alcoholism/NIH, 5625 Fishers Ln., Rockville, MD 20852-1798, USA.
Addiction Biology (Impact Factor: 5.93). 02/2011; 16(3):428-39. DOI: 10.1111/j.1369-1600.2010.00282.x
Source: PubMed

ABSTRACT The synaptic signaling mechanisms mediating the behavioral effects of ethanol (EtOH) remain poorly understood. Post-synaptic density 95 (PSD-95, SAP-90, Dlg4) is a key orchestrator of N-methyl-D-aspartate receptors (NMDAR) and glutamatergic synapses, which are known to be major sites of EtOH's behavioral actions. However, the potential contribution of PSD-95 to EtOH-related behaviors has not been established. Here, we evaluated knockout (KO) mice lacking PSD-95 for multiple measures of sensitivity to the acute intoxicating effects of EtOH (ataxia, hypothermia, sedation/hypnosis), EtOH drinking under conditions of free access and following deprivation, acquisition and long-term retention of EtOH conditioned place preference (CPP) (and lithium chloride-induced conditioned taste aversion), and intoxication-potentiating responses to NMDAR antagonism. PSD-95 KO exhibited increased sensitivity to the sedative/hypnotic, but not ataxic or hypothermic, effects of acute EtOH relative to wild-type controls (WT). PSD-95 KO consumed less EtOH than WT, particularly at higher EtOH concentrations, although increases in KO drinking could be induced by concentration-fading and deprivation. PSD-95 KO showed normal EtOH CPP 1 day after conditioning, but showed significant aversion 2 weeks later. Lithium chloride-induced taste aversion was impaired in PSD-95 KO at both time points. Finally, the EtOH-potentiating effects of the NMDAR antagonist MK-801 were intact in PSD-95 KO at the dose tested. These data reveal a major, novel role for PSD-95 in mediating EtOH behaviors, and add to growing evidence that PSD-95 is a key mediator of the effects of multiple abused drugs.

1 Bookmark
 · 
228 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: ABSTRACT Excessive activation of the N-Methyl-D-Aspartate (NMDA) receptor and the neurotransmitter dopamine (DA) mediate neurotoxicity and neurodegeneration under many neurological conditions, including Huntington's disease (HD), an autosomal dominant neurodegenerative disease characterized by the preferential loss of medium spiny projection neurons (MSNs) in the striatum. PSD-95 is a major scaffolding protein in the postsynaptic density (PSD) of dendritic spines, where a classical role for PSD-95 is to stabilize glutamate receptors at sites of synaptic transmission. Our recent studies indicate that PSD-95 also interacts with the D1 DA receptor localized in spines and negatively regulates spine D1 signaling. Moreover, PSD-95 forms ternary protein complexes with D1 and NMDA receptors, and plays a role in limiting the reciprocal potentiation between both receptors from being escalated. These studies suggest a neuroprotective role for PSD-95. Here we show that mice lacking PSD-95, resulting from genetic deletion of the GK domain of PSD-95 (PSD-95-ΔGK mice), sporadically develop progressive neurological impairments characterized by hypolocomotion, limb clasping, and loss of DARPP-32-positive MSNs. Electrophysiological experiments indicated that NMDA receptors in mutant MSNs were overactive, suggested by larger, NMDA receptor-mediated miniature excitatory postsynaptic currents (EPSCs) and higher ratios of NMDA- to AMPA-mediated corticostriatal synaptic transmission. In addition, NMDA receptor currents in mutant cortical neurons were more sensitive to potentiation by the D1 receptor agonist SKF81297. Finally, repeated administration of the psychostimulant cocaine at a dose regimen not producing overt toxicity-related phenotypes in normal mice reliably converted asymptomatic mutant mice to clasping symptomatic mice. These results support the hypothesis that deletion of PSD-95 in mutant mice produces concomitant overactivation of both D1 and NMDA receptors that makes neurons more susceptible to NMDA excitotoxicity, causing neuronal damage and neurological impairments. Understanding PSD-95-dependent neuroprotective mechanisms may help elucidate processes underlying neurodegeneration in HD and other neurological disorders.
    Journal of neurogenetics 04/2014; 28(1-2). DOI:10.3109/01677063.2014.892486 · 0.73 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Understanding the psychological mechanisms and underlying neurobiology of relapse behavior is essential for improving the treatment of addiction. Because the neurobiology of relapse behavior cannot be well studied in patients, we must rely on appropriate animal models. The alcohol deprivation effect (ADE) is a phenomenon in laboratory animals that models a relapse-like drinking situation, providing excellent face and predictive validity. In rodents, relapse-like behavior is largely influenced by the genetic make-up of an animal. It is not clear which other factors are responsible for variability of this behavior, but there seems to be no correlation between levels of baseline alcohol intake and the occurrence, duration, and robustness of the ADE. Rats that undergo long-term alcohol drinking for several months with repeated deprivation phases develop a compulsive drinking behavior during a relapse situation, characterized by insensitivity to taste adulteration with quinine, a loss of circadian drinking patterns during relapse-like drinking, and a shift toward drinking highly concentrated alcohol solutions to rapidly increase blood alcohol concentrations and achieve intoxication. Some mouse strains also exhibit an ADE, but this is usually of shorter duration than in rats. However, compulsive drinking in mice during a relapse situation has yet to be demonstrated. We extend our review section with original data showing that during long-term alcohol consumption, mice show a decline in alcohol intake, and the ADE fades with repeated deprivation phases. Furthermore, anti-relapse compounds that produce reliable effects on the ADE in rats produce paradoxical effects in mice. We conclude that the rat provides a better model system to study alcohol relapse and putative anti-relapse compounds.
    Alcohol (Fayetteville, N.Y.) 05/2014; 48(3):313-320. DOI:10.1016/j.alcohol.2014.03.002 · 2.41 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Traumatic fear memories are highly durable but also dynamic, undergoing repeated reactivation and rehearsal over time. Although overly persistent fear memories underlie anxiety disorders, such as posttraumatic stress disorder, the key neural and molecular mechanisms underlying fear memory durability remain unclear. Postsynaptic density 95 (PSD-95) is a synaptic protein regulating glutamate receptor anchoring, synaptic stability and certain types of memory. Using a loss-of-function mutant mouse lacking the guanylate kinase domain of PSD-95 (PSD-95(GK)), we analyzed the contribution of PSD-95 to fear memory formation and retrieval, and sought to identify the neural basis of PSD-95-mediated memory maintenance using ex vivo immediate-early gene mapping, in vivo neuronal recordings and viral-mediated knockdown (KD) approaches. We show that PSD-95 is dispensable for the formation and expression of recent fear memories, but essential for the formation of precise and flexible fear memories and for the maintenance of memories at remote time points. The failure of PSD-95(GK) mice to retrieve remote cued fear memory was associated with hypoactivation of the infralimbic (IL) cortex (but not the anterior cingulate cortex (ACC) or prelimbic cortex), reduced IL single-unit firing and bursting, and attenuated IL gamma and theta oscillations. Adeno-associated virus-mediated PSD-95 KD in the IL, but not the ACC, was sufficient to impair recent fear extinction and remote fear memory, and remodel IL dendritic spines. Collectively, these data identify PSD-95 in the IL as a critical mechanism supporting the durability of fear memories over time. These preclinical findings have implications for developing novel approaches to treating trauma-based anxiety disorders that target the weakening of overly persistent fear memories.Molecular Psychiatry advance online publication, 16 December 2014; doi:10.1038/mp.2014.161.
    Molecular Psychiatry 12/2014; DOI:10.1038/mp.2014.161 · 15.15 Impact Factor

Full-text (2 Sources)

Download
79 Downloads
Available from
May 19, 2014