Aldolase directly interacts with ARNO and modulates cell morphology and acidic vesicle distribution.

Program in Membrane Biology and Nephrology Division, Center for Systems Biology, Simches Research Center, Massachusetts General Hospital, 185 Cambridge Street, Boston, MA 02114, USA.
AJP Cell Physiology (Impact Factor: 3.71). 02/2011; 300(6):C1442-55. DOI: 10.1152/ajpcell.00076.2010
Source: PubMed

ABSTRACT Previously, we demonstrated that the vacuolar-type H(+)-ATPase (V-ATPase) a2-subunit functions as an endosomal pH sensor that interacts with the ADP-ribosylation factor (Arf) guanine nucleotide exchange factor, ARNO. In the present study, we showed that ARNO directly interacts not only with the a2-subunit but with all a-isoforms (a1-a4) of the V-ATPase, indicating a widespread regulatory interaction between V-ATPase and Arf GTPases. We then extended our search for other ARNO effectors that may modulate V-ATPase-dependent vesicular trafficking events and actin cytoskeleton remodeling. Pull-down experiments using cytosol of mouse proximal tubule cells (MTCs) showed that ARNO interacts with aldolase, but not with other enzymes of the glycolytic pathway. Direct interaction of aldolase with the pleckstrin homology domain of ARNO was revealed by pull-down assays using recombinant proteins, and surface plasmon resonance revealed their high avidity interaction with a dissociation constant: K(D) = 2.84 × 10(-10) M. MTC cell fractionation revealed that aldolase is also associated with membranes of early endosomes. Functionally, aldolase knockdown in HeLa cells produced striking morphological changes accompanied by long filamentous cell protrusions and acidic vesicle redistribution. However, the 50% knockdown we achieved did not modulate the acidification capacity of endosomal/lysosomal compartments. Finally, a combination of small interfering RNA knockdown and overexpression revealed that the expression of aldolase is inversely correlated with gelsolin levels in HeLa cells. In summary, we have shown that aldolase forms a complex with ARNO/Arf6 and the V-ATPase and that it may contribute to remodeling of the actin cytoskeleton and/or the trafficking and redistribution of V-ATPase-dependent acidic compartments via a combination of protein-protein interaction and gene expression mechanisms.

  • [Show abstract] [Hide abstract]
    ABSTRACT: The vacuolar H(+)-ATPase (V-ATPase) has long been appreciated to function as an electrogenic H(+) pump. By altering the pH of intracellular compartments, the V-ATPase dictates enzyme activity, governs the dissociation of ligands from receptors and promotes the coupled transport of substrates across membranes, a role often aided by the generation of a transmembrane electrical potential. In tissues where the V-ATPase is expressed at the plasma membrane, it can serve to acidify the extracellular microenvironment. More recently, however, the V-ATPase has been implicated in a bewildering variety of additional roles that seem independent of its ability to translocate H(+). These non-canonical functions, which include fusogenicity, cytoskeletal tethering and metabolic sensing, are described in this Cell Science at a Glance article and accompanying poster, together with a brief overview of the conventional functions of the V-ATPase. © 2014. Published by The Company of Biologists Ltd.
    Journal of Cell Science 12/2014; 127(23):4987-93. · 5.33 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Aldolase A deficiency has been reported as a rare cause of hemolytic anemia occasionally associated with myopathy. We identified a deleterious homozygous mutation in the ALDOA gene in 3 siblings with episodic rhabdomyolysis without hemolytic anemia. Myoglobinuria was always triggered by febrile illnesses. We show that the underlying mechanism involves an exacerbation of aldolase A deficiency at high temperatures that affected myoblasts but not erythrocytes. The aldolase A deficiency was rescued by arginine supplementation in vitro but not by glycerol, betaine or benzylhydantoin, three other known chaperones, suggesting that arginine-mediated rescue operated by a mechanism other than protein chaperoning. Lipid droplets accumulated in patient myoblasts relative to control and this was increased by cytokines, and reduced by dexamethasone. Our results expand the clinical spectrum of aldolase A deficiency to isolated temperature-dependent rhabdomyolysis, and suggest that thermolability may be tissue specific. We also propose a treatment for this severe disease.
    PLoS Genetics 11/2014; 10(11):e1004711. · 8.17 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Background Pathogenic chlamydiae are obligate intracellular pathogens and have adapted successfully to human cells, causing sexually transmitted diseases or pneumonia. Chlamydial outer protein N (CopN) is likely a critical effector protein secreted by the type III secretion system in chlamydiae, which manipulates host cells. However, the mechanisms of its action remain to be clarified. In this work, we aimed to identify previously unidentified CopN effector target in host cells.ResultsWe first performed a pull-down assay with recombinant glutathione S-transferase (GST) fusion CopN proteins (GST¿CpCopN: Chlamydia pneumoniae TW183, GST¿CtCopN: Chlamydia trachomatis D/UW-3/CX) as ¿bait¿ and soluble lysates obtained from human immortal epithelial HEp-2 cells as ¿prey¿, followed by SDS-PAGE with mass spectroscopy (MS). We found that a host cell protein specifically bound to GST¿CpCopN, but not GST¿CtCopN. MS revealed the host protein to be fructose bisphosphate aldolase A (aldolase A), which plays a key role in glycolytic metabolism. We also confirmed the role of aldolase A in chlamydia-infected HEp-2 cells by using two distinct experiments for gene knockdown with an siRNA specific to aldolase A transcripts, and for assessment of glycolytic enzyme gene expression levels. As a result, both the numbers of chlamydial inclusion-forming units and RpoD transcripts were increased in the chlamydia-infected aldolase A knockdown cells, as compared with the wild-type HEp-2 cells. Meanwhile, chlamydial infection tended to enhance expression of aldolase A.Conclusions We discovered that one of the C. pneumoniae CopN targets is the glycolytic enzyme aldolase A. Sequestering aldolase A may be beneficial to bacterial growth in infected host cells.
    BMC Microbiology 12/2014; 14(1):330. · 2.98 Impact Factor