Unmasking Genes in a Type 1 Diabetes–Resistant Mouse Strain That Enhances Pathogenic CD8 T-Cell Responses

The Jackson Laboratory, Bar Harbor, Maine, USA.
Diabetes (Impact Factor: 8.1). 02/2011; 60(4):1354-9. DOI: 10.2337/db10-0885
Source: PubMed


Nominally resistant mouse strains such as C57BL/6 (B6) harbor latent type 1 diabetes susceptibility genes uncovered in outcross to disease-susceptible NOD mice. However, identification of possible recessively acting B6-derived susceptibility genes is limited because very few F2 progeny derived from outcrossing this strain with NOD develop spontaneous autoimmune diabetes. Thus, we assessed whether a transgenic T-cell receptor (TCR) disease transfer model allowed the mapping of recessively acting B6 genetic loci that in the proper context contribute to diabetes.
CD8 T-cells transgenically expressing the diabetogenic AI4 TCR were transferred into 91 (NODxB6.H2(g7))F1xB6.H2(g7) first-backcross (BC1) females. A genome-wide scan was performed for loci affecting clinical diabetes and insulitis severity.
A major locus on chromosome 11 in tight linkage with the marker D11Mit48 (logarithm of odds score = 13.2) strongly determined whether BC1 progeny were susceptible to AI4 T-cell-mediated diabetes. Mice homozygous versus heterozygous for B6 markers of this chromosome 11 genetic locus were, respectively, highly susceptible or resistant to AI4-induced insulitis and diabetes. The genetic effect is manifest by host CD4 T-cells. Microarray analyses of mRNA transcript expression identified a limited number of candidate genes.
The distal region of chromosome 11 in B6 mice harbors a previously unrecognized recessively acting gene(s) that can promote autoreactive diabetogenic CD8 T-cell responses. Future identification of this gene(s) may further aid the screening of heterogeneous humans at future risk for diabetes, and might also provide a target for possible disease interventions.

12 Reads
  • [Show abstract] [Hide abstract]
    ABSTRACT: The development of therapies that specifically target autoreactive immune cells for the prevention and treatment of type 1 diabetes (T1D) without inducing generalized immunosuppression that often compromises the host's ability to clear non-self antigen is highly desired. This review discusses the mechanisms and potential therapeutic applications of antigen-specific T cell tolerance techniques using syngeneic apoptotic cellular carriers and synthetic nanoparticles that are covalently cross-linked to diabetogenic peptides or proteins through ethylene carbodiimide (ECDI) to prevent and treat T1D. Experimental models have demonstrated that intravenous injection of autoantigen decorated splenocytes and biodegradable nanoparticles through ECDI fixation effectively induce and maintain antigen-specific T cell abortive activation and anergy by T cell intrinsic and extrinsic mechanisms. The putative mechanisms include, but are not limited to, the uptake and processing of antigen-coupled nanoparticles or apoptotic cellular carriers for tolerogenic presentation by host splenic antigen-presenting cells, the induction of regulatory T cells, and the secretion of immune-suppressive cytokines, such as IL-10 and TGF-β. The safety profile and efficacy of this approach in preclinical animal models of T1D, including non-obese diabetic (NOD), BDC2.5 transgenic, and humanized mice, have been extensively investigated, and will be the focus of this review. Translation of this approach to clinical trials of T1D and other T cell-mediated autoimmune diseases will also be reviewed in this chapter.
    The Review of Diabetic Studies 01/2012; 9(4):319-327. DOI:10.1900/RDS.2012.9.319


12 Reads
Available from