The effect of caudal vs intravenous morphine on early extubation and postoperative analgesic requirements for stage 2 and 3 single-ventricle palliation: A double blind randomized trial

Department of Anesthesiology, Section of Pediatric Anesthesia, Medical College of Wisconsin, Children's Hospital of Wisconsin, Milwaukee, WI 53201, USA.
Pediatric Anesthesia (Impact Factor: 1.85). 02/2011; 21(4):441-53. DOI: 10.1111/j.1460-9592.2011.03527.x
Source: PubMed


High-dose single-shot caudal morphine has been postulated to facilitate early extubation and to lower initial analgesic requirements after staged single-ventricle (SV) palliation.
With Institutional Review Board approval and written informed parental consent, 64 SV children aged 75-1667 days were randomized to pre-incisional caudal morphine-bupivacaine (100 μg·kg(-1) morphine (concentration 0.1%), mixed with 0.25% bupivacaine with 1 : 200,000 epinephrine, total 1 ml·kg(-1)) and postcardiopulmonary bypass (CPB) intravenous (IV) droperidol (75 μg·kg(-1)) ('active caudal group') or pre-incisional caudal saline (1 ml·kg(-1)) and post-CPB IV morphine (150 μg·kg(-1)) with droperidol (75 μg·kg(-1)) ('active IV group'). Assignment remained concealed from families and the care teams throughout the trial. Early extubation failure rates (primary or reintubation within 24 h), time to first postoperative rescue morphine analgesia, and 12-h postoperative morphine requirements were assessed for extubated patients.
Thirty-one (12 stage 2) SV patients received caudal morphine and 32 (15 stage 2) received IV morphine. Extubation failure rates were 6/31 (19%) for caudal and 5/32 (16%) for IV morphine. For successfully extubated patients (n = 54), active caudal treatment significantly delayed the need for postoperative rescue morphine in stage 3 patients (P = 0.02) but not in stage 2 patients (P = 0.189) (Kaplan-Meier survival analysis with LogRank test). The reduction in 12-h postoperative morphine requirements with active caudal treatment did not reach significance (P = 0.085) but morphine requirements were significantly higher for stage 2 compared with stage 3 patients (P < 0.001) (two-way anova in n = 50 extubated patients).
High-dose caudal morphine with bupivacaine delayed the need for rescue morphine analgesia in stage 3 patients. All stage 2 patients required early rescue morphine and had significantly higher postoperative 12-h morphine requirements than stage 3 patients. Early extubation is feasible for the majority of stage 2 and 3 SV patients regardless of analgesic regimen. The study was underpowered to assess differences in extubation failure rates.

4 Reads

  • Pediatric Anesthesia 11/2011; 21(11):1089-91. DOI:10.1111/j.1460-9592.2011.03650.x · 1.85 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Neuraxial drugs provide robust pain control, have the potential to improve outcomes, and are an important component of the perioperative care of children. Opioids or clonidine improves analgesia when added to perioperative epidural infusions; analgesia is significantly prolonged by the addition of clonidine, ketamine, neostigmine, or tramadol to single-shot caudal injections of local anesthetic; and neonatal intrathecal anesthesia/analgesia is increasing in some centers. However, it is difficult to determine the relative risk-benefit of different techniques and drugs without detailed and sensitive data related to analgesia requirements, side effects, and follow-up. Current data related to benefits and complications in neonates and infants are summarized, but variability in current neuraxial drug use reflects the relative lack of high-quality evidence. Recent preclinical reports of adverse effects of general anesthetics on the developing brain have increased awareness of the potential benefit of neuraxial anesthesia/analgesia to avoid or reduce general anesthetic dose requirements. However, the developing spinal cord is also vulnerable to drug-related toxicity, and although there are well-established preclinical models and criteria for assessing spinal cord toxicity in adult animals, until recently there had been no systematic evaluation during early life. Therefore, in the second half of this review, we present preclinical data evaluating age-dependent changes in the pharmacodynamic response to different spinal analgesics, and recent studies evaluating spinal toxicity in specific developmental models. Finally, we advocate use of neuraxial drugs with the widest demonstrable safety margin and suggest minimum standards for preclinical evaluation before adoption of new analgesics or preparations into routine clinical practice.
    Anesthesia and analgesia 07/2012; 115(3):638-62. DOI:10.1213/ANE.0b013e31826253f2 · 3.47 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: This article provides a comprehensive, up to date summary of the effects of volatile, gaseous, and intravenous anesthetics and opioid agonists on ventilatory control. Emphasis is placed on data from human studies. Further mechanistic insights are provided by in vivo and in vitro data from other mammalian species. The focus is on the effects of clinically relevant agonist concentrations and studies using pharmacological, that is, supraclinical agonist concentrations are de-emphasized or excluded. © 2012 American Physiological Society. Compr Physiol 2:2281-2367, 2012.
    Comprehensive Physiology 10/2012; 2(4):2281-2367. DOI:10.1002/cphy.c100061 · 4.74 Impact Factor
Show more