A Low T Regulatory Cell Response May Contribute to Both Viral Control and Generalized Immune Activation in HIV Controllers

University of Toronto, Canada
PLoS ONE (Impact Factor: 3.23). 01/2011; 6(1):e15924. DOI: 10.1371/journal.pone.0015924
Source: PubMed

ABSTRACT HIV-infected individuals maintaining undetectable viremia in the absence of therapy (HIV controllers) often maintain high HIV-specific T cell responses, which has spurred the development of vaccines eliciting HIV-specific T cell responses. However, controllers also often have abnormally high T cell activation levels, potentially contributing to T cell dysfunction, CD4+ T cell depletion, and non-AIDS morbidity. We hypothesized that a weak T regulatory cell (Treg) response might contribute to the control of viral replication in HIV controllers, but might also contribute to generalized immune activation, contributing to CD4+ T cell loss. To address these hypotheses, we measured frequencies of activated (CD38+ HLA-DR+), regulatory (CD4+CD25+CD127(dim)), HIV-specific, and CMV-specific T cells among HIV controllers and 3 control populations: HIV-infected individuals with treatment-mediated viral suppression (ART-suppressed), untreated HIV-infected "non-controllers" with high levels of viremia, and HIV-uninfected individuals. Despite abnormally high T cell activation levels, controllers had lower Treg frequencies than HIV-uninfected controls (P = 0.014). Supporting the propensity for an unusually low Treg response to viral infection in HIV controllers, we observed unusually high CMV-specific CD4+ T cell frequencies and a strong correlation between HIV-specific CD4+ T cell responses and generalized CD8+ T cell activation levels in HIV controllers (P ≤ 0.001). These data support a model in which low frequencies of Tregs in HIV controllers may contribute to an effective adaptive immune response, but may also contribute to generalized immune activation, potentially contributing to CD4 depletion.

Download full-text


Available from: Elizabeth Sinclair, Sep 28, 2015
27 Reads
  • Source
    • "Elevated markers of immune activation and bacterial translocation were found in EC as compared to HAART treated patients (Hunt et al., 2008, 2011), and these abnormalities were associated with lower CD4+ cell counts. Excess morbidity from non-AIDS conditions was also found in EC compared to HAART treated patients with undetectable viral load. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Accumulating data generated from persons who naturally control HIV without the need for antiretroviral treatment has led to significant insights into the possible mechanisms of durable control of AIDS virus infection. At the center of this control is the HIV-specific CD8 T cell response, and the basis for this CD8-mediated control is gradually being revealed. Genome wide association studies coupled with HLA sequence data implicate the nature of the HLA-viral peptide interaction as the major genetic factor modulating durable control of HIV, but host genetic factors account for only around 20% of the variability in control. Other factors including specific functional characteristics of the TCR clonotypes generated in vivo, targeting of vulnerable regions of the virus that lead to fitness impairing mutations, immune exhaustion, and host restriction factors that limit HIV replication all have been shown to additionally contribute to control. Moreover, emerging data indicate that the CD8(+) T cell response may be critical for attempts to purge virus infected cells following activation of the latent reservoir, and thus lessons learned from elite controllers (ECs) are likely to impact the eradication agenda. On-going efforts are also needed to understand and address the role of immune activation in disease progression, as it becomes increasingly clear that durable immune control in ECs comes at a cost. Taken together, the research achievements in the attempt to unlock the mechanisms behind natural control of HIV will continue to be an important source of insights and ideas in the continuous search after an effective HIV vaccine, and for the attempts to achieve a sterilizing or functional cure in HIV positive patients with progressive infection.
    Frontiers in Immunology 06/2013; 4:162. DOI:10.3389/fimmu.2013.00162
  • Source
    • "This is illustrated by the modest success of the Thai vaccine trial, in which decreased HIV acquisition was observed with a CD4 + T cell-inducing vaccine [17]. Studying subpopulations of untreated HIV-infected patients with slow disease progression, as defined by immunologic or virologic parameters, allows us to obtain more insights into the protective mechanisms [18] [19]. Long-term non-progressors (LTNP) remain asymptomatic for many years and maintain high CD4 cell counts without antiretroviral therapy (ART), whereas viral controllers (VC) spontaneously suppress viral replication [19]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: A recombinant fusion protein (F4) consisting of HIV-1 p17, p24, reverse transcriptase (RT) and Nef, adjuvanted with AS01, induced strong and broad CD4(+) T-cell responses in healthy volunteers. Here we compare these vaccine-induced CD4(+) T-cell responses with the ones induced by natural infection in patients with varying disease courses. Thirty-eight HIV-infected, antiretroviral treatment-naïve subjects were classified into four categories: 8 long-term non-progressors (infection ≥7 years; CD4(+) T-cells ≥500/μL), 10 recently infected individuals (infection ≤2 years; CD4(+) T-cells ≥500/μL), 10 typical early progressors (CD4(+) T-cells ≤350/μL), and 10 viral controllers (plasma HIV-1 RNA <1000copies/mL). Peripheral blood mononuclear cells were stimulated in vitro with p17, p24, RT and Nef peptide pools and analyzed by flow cytometry for expression of IL-2, IFN-γ, TNF-α and CD40L. CD4(+) T-cell responses were compared to those measured with the same method in 50 HIV-uninfected subjects immunized with the F4/AS01 candidate vaccine (NCT00434512). After in vitro stimulation with p17, p24 and RT antigen viral controllers had significantly more CD4(+) T-cells co-expressing IL-2, IFN-γ and TNF-α than other HIV patient categories. The magnitude and quality of these responses in viral controllers were comparable to those observed in F4/AS01 vaccine recipients. In contrast with viral controllers, triple cytokine producing CD4(+) T-cells in vaccinees also expressed CD40L. Subjects who spontaneously control an HIV infection display polyfunctional CD4(+) T cell responses to p17, p24, RT and Nef, with similar magnitude and qualities as those induced in healthy volunteers by an adjuvanted HIV candidate vaccine (F4/AS01).
    Vaccine 05/2013; 31(36). DOI:10.1016/j.vaccine.2013.05.021 · 3.62 Impact Factor
  • Source
    • "Recent studies of HIV-1 infection in BLT mice and patients have found evidence of elevated CD38+HLA-DR+ CD8+ T cells in blood [46,47]. We also observed this effect with LAI infection. "
    [Show abstract] [Hide abstract]
    ABSTRACT: The outcome of untreated HIV-1 infection is progression to AIDS and death in nearly all cases. Some important exceptions are the small number of patients infected with HIV-1 deleted for the accessory gene, nef. With these infections, disease progression is entirely suppressed or greatly delayed. Whether Nef is critical for high levels of replication or is directly cytotoxic remains controversial. The major problem in determining the role of Nef in HIV/AIDS has been the lack of tractable in vivo models where Nef's complex pathogenic phenotype can be recapitulated. Intravenous inoculation (3000 to 600,000 TCIU) of BLT humanized mice with HIV-1LAI reproducibly establishes a systemic infection. HIV-1LAI (LAI) replicates to high levels (peak viral load in blood 8,200,000 ± 1,800,000 copies of viral RNA/ml, range 3,600,000 to 20,400,000; n = 9) and exhaustively depletes CD4+ T cells in blood and tissues. CD4+CD8+ thymocytes were also efficiently depleted but CD4+CD8- thymocytes were partially resistant to cell killing by LAI. Infection with a nef-deleted LAI (LAINefdd) gave lower peak viral loads (1,220,000 ± 330,000, range 27,000 to 4,240,000; n = 17). For fourteen of seventeen LAINefdd-infected mice, there was little to no loss of either CD4+ T cells or thymocytes. Both LAI- and LAINefdd-infected mice had about 8% of total peripheral blood CD8+ T cells that were CD38+HLA-DR+ compared <1% for uninfected mice. Three exceptional LAINefdd-infected mice that lost CD4+ T cells received 600,000 TCIU. All three exhibited peak viral loads over 3,000,000 copies of LAINefdd RNA/ml. Over an extended time course, substantial systemic CD4+ T cell loss was observed for the three mice, but there was no loss of CD4+CD8+ or CD4+CD8- thymocytes. We conclude Nef is necessary for elevated viral replication and as a result indirectly contributes to CD4+ T cell killing. Further, Nef was not necessary for the activation of peripheral blood CD8+ T cells following infection. However, CD4+CD8+ thymocyte killing was dependent on Nef even in cases of elevated LAINefdd replication and T cell loss. This depletion of thymic T cell precursors may be a significant factor in the elevated pathogenicity of CXCR4 trophic HIV-1.
    Retrovirology 05/2012; 9(1):44. DOI:10.1186/1742-4690-9-44 · 4.19 Impact Factor
Show more