Article

Complete genome sequence of Jonesia denitrificans type strain (Prevot 55134). Stand Genomic Sci 1:262-269

Standards in Genomic Sciences (Impact Factor: 3.17). 12/2009; 1(3):262-9. DOI: 10.4056/sigs.41646
Source: PubMed

ABSTRACT Jonesia denitrificans (Prevot 1961) Rocourt et al. 1987 is the type species of the genus Jonesia, and is of phylogenetic interest because of its isolated location in the actinobacterial suborder Micrococcineae. J. denitrificans is characterized by a typical coryneform morphology and is able to form irregular nonsporulating rods showing branched and club-like forms. Coccoid cells occur in older cultures. J. denitrificans is classified as a pathogenic organism for animals (vertebrates). The type strain whose genome is described here was originally isolated from cooked ox blood. Here we describe the features of this organism, together with the complete genome sequence and annotation. This is the first completed genome sequence of a member of the genus for which a complete genome sequence is described. The 2,749,646 bp long genome with its 2558 protein-coding and 71 RNA genes is part of the Genomic Encyclopedia of Bacteria and Archaea project.

Download full-text

Full-text

Available from: Alex C Copeland, Sep 01, 2015
0 Followers
 · 
330 Views
 · 
51 Downloads
  • Source
    • "Clones were affiliated to the species Saccharopolyspora rosea, which was first isolated from a patient with bronchial carcinoma [Yassin 2009], and other species that generally occur in the environment, such as saline lakes, soil, marine sediments and even sponge tissue: Saccharopolyspora gloriosa, Saccharopolyspora cebuensis, Saccharopolyspora antimicrobica, Saccharopolyspora salina and Saccharopolyspora halophila [Pimentel-Elardo et al. 2008; Yuan et al. 2008; Suthindhiran & Kannabiran 2009; Tang et al. 2009; Qin et al. 2010]. Some other species belonging to the same order, Actinomycetales, included Actinopolyspora xinjiangensis, an extreme halophile isolated from salt-lake sediments [Guan et al. 2010], Nocardioides aestuarii, isolated from tidal flat sediment [Yi and Chun 2004] and Jonesia denitrificans, a pathogenic organism that had its genome sequencing completed in 2009 [Pukall et al. 2009]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: The upper parts of oil field structures may leak gas which is supposed to be indirectly detected by the soil bacterial populations. Such microorganisms are capable of consuming this gas, supporting the Microbial Prospection of Oil and Gas (MPOG) methodology. The goal of the present work was to characterize microbial communities involved in short-chain alkane metabolism, namely methane, ethane and propane, in samples from a petroliferous (P) soil through clone libraries of the 16S rRNA gene of the Domains Bacteria and Archaea and the catabolic gene coding for the soluble di-iron monooxygenase (SDIMO) enzyme alpha subunit. The microbial community presented high abundance of the bacterial phylum Actinobacteria, which represented 53% of total clones, and the Crenarchaeota group I.1b from the Archaea Domain. The analysis of the catabolic genes revealed the occurrence of seven Operational Protein Families (OPF) and higher richness (Chao = 7; Ace = 7.5) and diversity (Shannon = 1.09) in P soil when compared with a non-petroliferous (Np) soil (Chao = 2; Ace = 0, Shannon = 0.44). Clones related to the ethene monooxygenase (EtnC) and methane monooxygenase (MmoX) coding genes occurred only in P soil, which also presented higher levels of methane and lower levels of ethane and propane, revealed by short-chain hydrocarbon measures. Real-time PCR results suggested that the SDIMO genes occur in very low abundance in the soil samples under study. Further investigations on SDIMOs genes in natural environments are necessary to unravel their still uncharted diversity and to provide reliable tools for the prospection of degrading populations.
    AMB Express 10/2011; 1(1):35. DOI:10.1186/2191-0855-1-35
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Halorhabdus utahensis Wainø et al. 2000 is the type species of the genus, which is of phylogenetic interest because of its location on one of the deepest branches within the very extensive euryarchaeal family Halobacteriaceae. H. utahensis is a free-living, motile, rod shaped to pleomorphic, Gram-negative archaeon, which was originally isolated from a sediment sample collected from the southern arm of Great Salt Lake, Utah, USA. When grown on appropriate media, H. utahensis can form polyhydroxybutyrate (PHB). Here we describe the features of this organism, together with the complete genome sequence, and annotation. This is the first complete genome sequence of the a member of halobacterial genus Halorhabdus, and the 3,116,795 bp long single replicon genome with its 3027 protein-coding and 48 RNA genes is part of the Genomic Encyclopedia of Bacteria and Archaea project.
    Standards in Genomic Sciences 12/2009; 1(3):218-25. DOI:10.4056/sigs.31864 · 3.17 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The phylum Actinobacteria harbors many important human pathogens and also provides one of the richest sources of natural products, including numerous antibiotics and other compounds of biotechnological interest. Thus, a reliable phylogeny of this large phylum and the means to accurately identify its different constituent groups are of much interest. Detailed phylogenetic and comparative analyses of >150 actinobacterial genomes reported here form the basis for achieving these objectives. In phylogenetic trees based upon 35 conserved proteins, most of the main groups of Actinobacteria as well as a number of their superageneric clades are resolved. We also describe large numbers of molecular markers consisting of conserved signature indels in protein sequences and whole proteins that are specific for either all Actinobacteria or their different clades (viz., orders, families, genera, and subgenera) at various taxonomic levels. These signatures independently support the existence of different phylogenetic clades, and based upon them, it is now possible to delimit the phylum Actinobacteria (excluding Coriobacteriia) and most of its major groups in clear molecular terms. The species distribution patterns of these markers also provide important information regarding the interrelationships among different main orders of Actinobacteria. The identified molecular markers, in addition to enabling the development of a stable and reliable phylogenetic framework for this phylum, also provide novel and powerful means for the identification of different groups of Actinobacteria in diverse environments. Genetic and biochemical studies on these Actinobacteria-specific markers should lead to the discovery of novel biochemical and/or other properties that are unique to different groups of Actinobacteria.
    Microbiology and molecular biology reviews: MMBR 03/2012; 76(1):66-112. DOI:10.1128/MMBR.05011-11 · 15.26 Impact Factor
Show more