Density enhanced phosphatase-1 down-regulates urokinase receptor surface expression in confluent endothelial cells

Department of Vascular Biology and Thrombosis Research, Center for Biomolecular Medicine and Pharmacology, Medical University Vienna, Vienna, Austria.
Blood (Impact Factor: 10.45). 02/2011; 117(15):4154-61. DOI: 10.1182/blood-2010-09-307694
Source: PubMed


VEGF(165), the major angiogenic growth factor, is known to activate various steps in proangiogenic endothelial cell behavior, such as endothelial cell migration and invasion, or endothelial cell survival. Thereby, the urokinase-type plasminogen activator (uPA) system has been shown to play an essential role not only by its proteolytic capacities, but also by induction of intracellular signal transduction. Therefore, expression of its cell surface receptor uPAR is thought to be an essential regulatory mechanism in angiogenesis. We found that uPAR expression on the surface of confluent endothelial cells was down-regulated compared with subconfluent proliferating endothelial cells. Regulation of uPAR expression was most probably affected by extracellular signal-regulated kinase 1/2 (ERK1/2) activation, a downstream signaling event of the VEGF/VEGF-receptor system. Consistently, the receptor-like protein tyrosine phosphatase DEP-1 (density enhanced phosphatase-1/CD148), which is abundantly expressed in confluent endothelial cells, inhibited the VEGF-dependent activation of ERK1/2, leading to down-regulation of uPAR expression. Overexpression of active ERK1 rescued the DEP-1 effect on uPAR. That DEP-1 plays a biologic role in angiogenic endothelial cell behavior was demonstrated in endothelial cell migration, proliferation, and capillary-like tube formation assays in vitro.

9 Reads
  • Source
    • "Cell morphology, expression of cell surface molecules and behavior of the ECs differ in subconfluent versus confluent ECs [54]. Additionally, the EC response to an agonist varies depending on cell density [55], [56]. A quiescent EC monolayer is more similar to the in vivo setting in appearance and differentiated properties [57], [58]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Vascular endothelial cells (ECs) are a target of antibody-mediated allograft rejection. In vitro, when the HLA class I molecules on the surface of ECs are ligated by anti-HLA class I antibodies, cell proliferation and survival pathways are activated and this is thought to contribute to the development of antibody-mediated rejection. Crosslinking of HLA class I molecules by anti-HLA antibodies also triggers reorganization of the cytoskeleton, which induces the formation of F-actin stress fibers. HLA class I induced stress fiber formation is not well understood. The present study examines the protein composition of the cytoskeleton fraction of ECs treated with HLA class I antibodies and compares it to other agonists known to induce alterations of the cytoskeleton in endothelial cells. Analysis by tandem mass spectrometry revealed unique cytoskeleton proteomes for each treatment group. Using annotation tools a candidate list was created that revealed 12 proteins, which were unique to the HLA class I stimulated group. Eleven of the candidate proteins were phosphoproteins and exploration of their predicted kinases provided clues as to how these proteins may contribute to the understanding of HLA class I induced antibody-mediated rejection. Three of the candidates, eukaryotic initiation factor 4A1 (eIF4A1), Tropomyosin alpha 4-chain (TPM4) and DDX3X, were further characterized by Western blot and found to be associated with the cytoskeleton. Confocal microscopy analysis showed that class I ligation stimulated increased eIF4A1 co-localization with F-actin and paxillin. Colocalization of eIF4A1 with F-actin and paxillin following HLA class I ligation suggests that this candidate protein could be a target for understanding the mechanism(s) of class I mediated antibody-mediated rejection. This proteomic approach for analyzing the cytoskeleton of ECs can be applied to other agonists and various cells types as a method for uncovering novel regulators of cytoskeleton changes.
    PLoS ONE 01/2012; 7(1):e29472. DOI:10.1371/journal.pone.0029472 · 3.23 Impact Factor
  • Source
    Blood 04/2011; 117(15):3941-3. DOI:10.1182/blood-2011-02-337733 · 10.45 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Etiological concepts on cancer development, malignant growth and tumour propagation have undergone a revolutionary development during recent years: Among other aspects, the discovery of angiogenesis - the growth of new blood vessels from pre-existing vasculature - as a key element in the pathogenesis of malignancy has opened an abundance of biologic insights and subsequent therapeutic options, which have led to improved prognosis in many cancers including those originating from colon, lung, breast and kidney. Thereby, targeting the major pro-angiogenic stimulus vascular endothelial growth factor (VEGF) became the focus for therapeutic interventions. However, the use of VEGF-targeting drugs has been shown to be of limited efficacy, which might lie in the fact that tumor angiogenesis is mediated by a variety of different subcellular systems. This review focuses on the basic mechanisms involved in angiogenesis, which potentially represent novel targets for pharmacological agents in the treatment of malignancies.
    Hamostaseologie 08/2011; 32(2):105-14. DOI:10.5482/ha-1163 · 1.60 Impact Factor
Show more